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Abstract: To formulate and monitor the progress of development policies, acquiring data with suffi-
cient spatiotemporal details is inevitable. With the increasing availability of open remote-sensing data
and open-source software packages, this research suggested the novelty integration of satellite data
and spatial analytical methods, enabling a timely and costless framework for assessing the nationwide
socioeconomic condition. Specifically, the spatial statistical and spatial econometrical methods were
applied to geospatial data to identify the clustering patterns and the localized associations of inequal-
ity in Thailand. The spatial statistical results showed that Bangkok and its vicinity had been a cluster
of high socioeconomic conditions, representing the spatial inequality of development. In addition,
results of the spatial econometrical models showed that the satellite-based indicators could identify
the socioeconomic condition (with p-value < 0.010 and R-squared ranging between 0.345 and 0.657).
Inequality indicators (i.e., Gini, Thiel and Atkinson) were then constructed by using survey-based
and satellite-based data, informing that spatial inequality has been slowly declining. These findings
recommended the new establishment of polycentric growth poles that offer economic opportunities
and reduce spatial inequality. In addition, in accordance with Sustainable Development Goal 10
(reduced inequalities), this analytical framework can be applied to country-specific implications
along with the global scale extensions.

Keywords: Thailand; inequality; satellite data; remote sensing

1. Introduction

The Thai economy has been continuously evolving, particularly since the implementa-
tion of the first national development plan in 1961. The development process has induced
the gradual change of social and economic structure, transforming the agricultural-based
system into the higher intensity of industrial and service activities. This progress leads to a
higher standard of living, as indicated by the continuous higher life expectancy, literacy
rate, and average income. During the period 1988–2019, poverty headcount has been
substantially declining from 61.41% to 5.04% [1].

Although Thailand’s economic development over the course of six decades has been
relatively fruitful, the economic development remains limited and fragmented in geograph-
ical dimensions. Development of infrastructure and concentration of economic activity
have been largely clustering in Bangkok metropolitan areas, and the rural areas relatively
remain at a lower level. In particular, Thailand globally ranked first for the urban primacy
index, indicating the largest gap between the size of the largest city and those of the second
and third ones [2]. Similarly, some studies documented the similar issue of Thailand’s
monocentric growth pole, a spatial concentration of economic growth in Bangkok metropo-
lis and vicinity [3,4]. A study that applied quantitative methods to the official industrial
census also confirmed the long-term persistence of this disproportionate spatial pattern
of industrial growth with statistically significant indicators [5]. This spatial inequality can
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impede future economic growth due to the lack of opportunity to fully utilize the regional
potentials and initiate alternative growth poles. Equally important, this disproportionate
development can simultaneously incur environmental and social problems. In addition,
this problem is internationally recognized and studied on a global scale and at country level,
motivated by development of empirical findings and data-driven analytical methods [6–9].

On the basis of these facts, understanding Thailand’s spatial inequality is crucial
for future policy formulations and development sustainability. Hence, this study aims
to quantitatively investigate the spatial inequality in Thailand by incorporating survey-
based data, satellite imageries, and spatial analysis techniques. In particular, two official
socioeconomic datasets produced by National Statistical Office (NSO), namely, Socio-
Economic Survey (SES) and Thailand Poverty Map, are the survey-based socioeconomic
indicators in this analysis. These data were analyzed in conjunction with a set of geospatial
data obtained from Google Earth Engine, including satellite-detected nighttime light (NTL),
normalized vegetation difference index (NDVI), land surface temperature (LST), and
rainfall statistics. The spatial statistical and spatial econometrical methods were applied to
these data to quantify the degree of spatial inequality and examine the spatial associations
between survey-based indicators and satellite data. The results obtained from spatial
statistical techniques unveil the historical and spatial characteristics of disproportionate
growth in Thailand. The spatial econometrical method (i.e., spatial regression) suggests
the satellite-based indicator that can represent the socioeconomic condition, enabling the
extensive applications of timely monitoring the spatial inequality and recommending the
policy for rebalancing and sustaining the future development.

The structure of this paper is organized as follows. The second section reviews related
publications. The third part elaborates the technical foundations of research methods. The
fourth section discusses the results. The fifth section concludes the main contributions of
this study.

2. Literature Review

Inequality has been recognized as one of the main socioeconomic problems. In particu-
lar, the global datasets indicated the worsening trends in many countries, leading to serious
concerns among researchers and policymakers [10–12]. Simultaneously, geospatial data
have been continuously developing to support monitoring the situation and formulating
policy [13]. The increasing availability of multi-source data and computational methods
enables the extensive development of applications to examine the geographical features of
poverty and inequality in many countries [14–18].

The progress of data-driven analyses also facilitates multifaceted studies, for example,
the detection of slum locations [19,20]. Also, the inequality indicators derived from satellite
data, primarily using the NTL index, were constructed on a global scale, allowing a timely
and costless framework for monitoring the global situation of spatial inequality [7,21–23].
A similar approach was applied to the country-specific study of poverty and inequality, for
example, the cases of African countries [24,25], China [9,26,27], Romania [6], Paraguay [26],
Bangladesh [18] and Myanmar [27,28].

With the continuous development of analytical techniques [6,7,22,23] and the inter-
nationally rising concerns on inequality [10–12,29], this study acknowledged the research
gap in the case of Thailand. Therefore, the novelty integration of the open satellite data
and the spatial statistical/econometrical methods was introduced. Specifically, this study
showed that Google Earth Engine, an open platform, can enable public accessibility and
cloud-based geoprocessing of satellite data related to socioeconomic conditions. Likewise,
the open-source software packages can facilitate low-cost computational capabilities using
geospatial methods. The integrated outcomes would deepen insights on multifaceted
associations inducing the geographical clustering pattern of poverty and subsequently
empower the investigation of underlying factors, ultimately leading to the formulation of
regional development policy.
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3. Data

The content in this section provides basic details of the data used in the analysis. Two
groups of sources are used with Quantum GIS and GeoDA, open-source spatial analysis
software packages. The details of each data group are as follows:

3.1. Data from Surveys

This study used secondary datasets surveyed by the government agency. The survey
data used in this study consist of two variables as follows:

3.1.1. Household Income Data

This dataset was obtained from the SES conducted by the NSO of Thailand. These
surveys have operated since 1957, selecting randomly from 52,000 households all over the
country. The questions of these surveys consist of the details of the entire household, the
member’s structure, details of expenses, and the characteristics of the residence. Questions
about income are interviewed every two years (with the exception of conducting the
annual survey in some years), and random surveys cover households with municipal and
nonmunicipal residences. This study used the household income of the period 1992–2017
and then adjusted to average values by each province.

3.1.2. Poverty Data

This variable was obtained from Thailand’s Poverty Map dataset conducted by NSO.
This dataset used raw data from the Household SES and Population and Housing Census.
It was calculated with the poverty line dataset developed by the National Economic
and Social Development Council (NESDC) and Thailand Development Research Institute
(TDRI), yielding the proportion of the number of people whose expense is below the
poverty line. This study used this dataset of 2013, 2015 and 2017.

3.2. Data from Google Earth Engine

Google Earth Engine is a satellite data service that Google has opened to the public
to access geospatial datasets. This platform provides a wide range of data from various
sources, allowing users to code, select, calculate, and adjust the data by their specific
requirements. The satellite data used in this study consist of four variables as follows:

3.2.1. NTL Data

NTL data are satellite imagery of the Earth at night consisting of two datasets. The
first is obtained from satellites under the DMSP, which uses a sensor system called OLS.
This satellite provided the images from 1992 to 2014. The images obtained resulted from
light detection by using image sensors during light ranges visible near-infrared (VNIR)
from 8:30 p.m. to 10:00 p.m. for each spot on the Earth’s surface. The National Oceanic and
Atmospheric Administration has enhanced some errors of the images, such as moonlight
in the upward range, the light from the summer sun with a long daytime, the disturbances
from the Northern-Southern Lights (or aurora) or wildfire lights. The satellite imagery
characteristic is black-and-white hues with 64 levels in each point (or in pixels). The range
of images is between 0 and 63. The minimum value is zero or a point without light, and a
value of 63 represents the highest level of light. One pixel is 0.86 km2 at the equator but
larger if far from the equator.

However, after the DMSP/OLS satellite project ended, a new satellite was launched
and sent into orbit in 2011. The new satellite is under the SNPP program and uses a new
light sensor called the VIIRS. The NTL data detected by SNPP/VIIRS are developed to
have a higher resolution (1 pixel of the image is the same size as an area of 375 m × 375 m
on the surface of the Earth) and the same increased level of brightness for each data point,
with a brightness level of 256 levels. The images from this satellite have been provided
every month.
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The most popular socioeconomic indicators that are usually studied with NTL are indi-
cators measuring economic activities. For example, GDP found in [30–33], and populations
found in [9,28,34]. Some papers studied the relationships between NTL and inequality
issues. For example, the Gini coefficient, [32,34]; maternal or infant mortality rates, [35,36];
Theil index, [9,37]; Integrated Poverty Index weighted from 10 different inequality-related
variables in the study of [38], and education index (EI) by [34] found a negative relationship
with NTL.

This study used data from the two satellites, adjusted to the average of NTL per square
kilometers, and divided into the provincial and subdivision levels. Figures 1 and 2 exem-
plify NTL imageries of Thailand obtained from DMSP/OLS and SNPP/VIIRS, respectively.
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Figure 1. NTL imageries of Thailand obtained from DMSP/OLS satellites. Source: Authors’ compila-
tion. (a) 1992, (b) 2013.

3.2.2. Vegetation Index Data

The vegetation index data used in this paper are images on the Earth’s surface detected
by sensors in the form of the Moderate Resolution Imaging Spectroradiometer (MODIS)
installed in Terra and Aqua satellites. The sensors can detect a wide range of physical
features on the Earth’s surface, such as surface temperature, ground temperature, clouds,
airborne droplets, ocean color, phytoplankton, and biogeochemistry. The MODIS sensor
unit is divided into 36 bands of spectrum data detection, ranging from 0.4 to 14.4 µm
wavelengths and three spatial resolutions: 250 m (band 1 and band 2), 500 m (band 3 to
band 7), and 1 km (band 8 to band 36).

This study used the NDVI data obtained from MODIS satellite sensors in band 1
(ranges 620–670 nm) and band 2 (range 841–876 nm). NDVI is computed by using the
difference in the ability of plants to reflect specific ranges of the electromagnetic spectrum.
The range of the index is −1 and 1. If the density of vegetation is high, then NDVI
approaches 1. However, if the plants are unhealthy, then NDVI is close to 0, and the water
surface shows near −1.

The NDVI is always used as the vegetation index. The vegetation difference index
is obtained between −1 and 1, which can be used to analyze surface and vegetation-
covered areas.
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The examples of related studies using NDVI are as follows: the positive relationship
between GDP and NDVI was reported [39–41]. Another study documented the correlation
between socioeconomic indicators and the vegetation degradation index calculated on
the basis of NDVI [42]. In addition, the extended study observed that urban expansion
has reduced China’s vegetation cover, reflected by a significant decline in the vegetation
difference index in urban areas [43].
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Some studies found a correlation between the NDVI and poverty. In the case of Kenya
and China, NDVI is one of the factors that can be negatively associated with the poverty
level [44,45]. This finding indicates that areas with low vegetation have higher poverty
rates. Similarly, another study observed a negative correlation between NDVI and poverty
in the case of Tanzania [46]. However, the case of bidirectional links between rural poverty
and natural environmental factors, including NDVI, was also reported [47].

Based on the dataset available on Google Earth Engine, this study created and classified
the annual average NDVI in two resolution levels of the provincial and subdistrict averages.
Figure 3 illustrates an example of NDVI data of Thailand, which is the annual average in
2000 and 2017. The dark green area represents the high density of vegetation, mostly the
forest and mountainous terrain.

3.2.3. Rainfall Index Data

The data used in this study were obtained from the Climate Hazards Group Infrared
Precipitation with Stations (CHIRPS), combining rainfall data from satellites and rain gauge
stations. Individuals can access the CHIRPS database through Google Earth Engine, which
has data since 1981. The data have a spatial resolution of 0.05 arc degrees or approximately
110 m per pixel.
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Figure 3. NDVI data of Thailand (2000 and 2017). Source: Google Earth Engine and authors’
compilation. (a) 2000, (b) 2017.

Most papers studying the relationship between rainfall and socioeconomic indicators
are found in most cases of developing countries because the proportion of agriculture per
GDP in developing countries is more significant than that of developing countries. In other
words, rainfall is one of the inputs for cultivation. This corresponding research was found
in [48], showing a correlation between rainfall and real GDP per capita in African countries
with a positive relationship. By contrast, rainfall negatively affects economic activity in
developed countries, especially in the service sector. In particular, a study integrating
rainfall statistics and financial transactions found a positive relationship in countries where
the financial sector with less share of GDP but obtained a negative relationship in countries
where the financial sector is significant [49]. Moreover, a concave relationship between
GDP growth and rainfall in developing countries was reported [50].

Certain studies have been conducted on rainfall variability and inequality, which
found negative relationships, such as in some cases in African countries [51,52]. Some
papers applied indirect Inequality using agricultural yields as a dependent variable, such
as cases of Ethiopia [53], Nigeria [54], and India [55]. All three studies found negative
relationships. On the contrary, a positive relationship between rainfall and inequality was
also documented in the case of India, showing that the intensity of rainfall could increase
the risk of food insecurity and restrict access to healthcare [56].

This study adjusted the rainfall index to average values on provincials and subdistricts.
Figure 4 illustrates the rainfall index of Thailand in 2000 and 2017. The red areas imply
high rainfall, and the white areas are droughts.

3.2.4. LST

The world’s surface temperature and thermal radiation are detected by MODIS sensors,
which use band frequencies of 20–23 and 30–31 or a bandwidth range between 3.66 and
4.080 nanometers and 10.780 to 11.280 µm. The surface temperature data are collected every
day with a spatial resolution of 1 km. This dataset can be browsed through the Google
Earth Engine service starting from 5 March 2000. The land surface temperature map of
Thailand is shown in Figure 5.
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Figure 5. LST data of Thailand (annual average in 2000 and 2017). Source: Google Earth Engine and
authors’ compilation. (a) 2000, (b) 2017.

Empirically, LST has a statistically significant association with socioeconomic variables
because commercial and industrial zones, which are areas of high-value economic activity,
have higher surface temperatures than agricultural or forestry zones with lower levels of
economic activity. The examples of studies in developed countries are as follows: in the
case of the US, the negative relationship between surface temperatures and household
income and education levels was documented [57]. Similarly, in the case of the US, another
study confirmed that income per capita growth positively relates to LST [58]. In the case
of developing countries, many publications confirmed that an increase in population and
socioeconomic variables, such as industrial development and infrastructure development
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in Nigeria, affect LST [59]. This condition is because the growth of urbanization directly
affects the change from green spaces to building zones and causes the phenomenon of
the city’s surface heating island. In particular, a study focusing on specific categories of
built-up areas showed that the highest surface temperatures are found in commercial areas
or dense living spaces [60].

Some studies investigated the relationship between LST and NDVI data [61–65]. These
studies found a negative relationship because green zones have lower surface temperatures
than residential, commercial, and industrial zones. They also confirmed that urban areas or
densely populated areas have high surface temperatures. The results are consistent in Asia,
Africa, and Europe, confirming the relationship between LST and socioeconomic variables.
Furthermore, in the case of Malaysia, the relationship between LST and deforestation
measuring by using NDVI was documented, verifying a statistically negative correlation
between the two indicators [66].

Table 1 summarizes the main features of both survey-based and satellite-based data
used in this study.

Table 1. Main specifications of data.

Data Spatial Resolution Data Source

Normalized Difference Vegetation Index (NDVI) Provincial and subdistrict averages Google Earth Engine (derived from
Terra MODIS satellite)

Land Surface Temperature (LST) Provincial and subdistrict averages Google Earth Engine (derived from
Terra MODIS satellite)

Rainfall index Provincial and subdistrict averages
Google Earth Engine (derived from
Climate Hazards Group Infrared
Precipitation with Stations (CHIRPS))

Nighttime Light (2000–2013) Provincial and subdistrict averages Google Earth Engine (derived from
DMSP/OLS satellites)

Nighttime Light (2014–2019) Provincial and subdistrict averages Google Earth Engine (derived from
VIIRS/DNB satellite)

Socioeconomic Survey (SES) Provincial average Thailand’s National Statistical Office
(NSO)

Poverty headcount statistics Subdistrict (i.e., tambon) Thailand’s National Statistical Office
(NSO)

Population density Provincial and subdistrict statistics Thailand’s Ministry of Interior

Source: Authors’ compilation.

4. Research Methods

To quantitatively examine the geographical characteristics of data, spatial statistical
and spatial econometrical methods were applied. Specifically, spatial statistical tools enable
cluster detection on a spatial dimension, while spatial econometrical methods empower
the investigation of spatial association and spillover causality.

4.1. Spatial Statistical Methods
4.1.1. High/Low Clustering (Getis-Ord General G) Statistic

The research used the Getis-Ord General G method, one of the spatial statistics tech-
niques geographically indicating the clusters of high and low values (i.e., high/low clus-
tering test) [67]. This technique is based on mathematical computation, as shown in
Equation (1).

G =
∑n

i=1 ∑n
j=1 wijxixj

∑n
i=1 ∑n

j=1 xixj
, ∀j 6= i. (1)

On the basis of the foundation of the statistical correlation test, Equation (1) represents
the localized co-movement between xi and xj. Given that spatial statistics incorporates the
geographical features of variables, the spatial weight matrix wij mathematically identifies
the neighborhood of xi. A zero value of the element of wij indicates that xi and xj are
not spatially related (i.e., no adjacency or located outside the specified boundary). The
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Getis-Ord General G method generates the numerical outcome ranging between 0 and
1. The significance test is conducted because this method is based on statistical inference,
yielding a significant indicator of p-value. Therefore, the outcome is a combination of the
cluster map showing the value of Getis-Ord General G and the significance map statistically
exhibiting the significant indicator of p-value. Specifically, the cluster map illustrates the
detected areas of the high-value cluster (hot spot) and low-value cluster (cold spot).

Getis-Ord General G is also applied to analyze many infectious disease studies, for
example, the verification of the spatial connection between the COVID-19 incidence and
mortality rates in Oman [68], and the similar study investigating the spatial patterns of
the COVID-19 outbreak in Brazil [69]. In addition, it was used in the analysis of China’s
spatiotemporal distribution of dengue fever [70].

4.1.2. Moran’s I Statistic

The spatial autocorrelation statistic (Moran’s I) is one of the univariate computational
techniques for quantifying the degree of spatial autocorrection [71,72]. Following the basis
of the statistical correlation test, the formula for calculating Moran’s I statistic is as follows.

Moran′s I =
N ∑i ∑j wij (xi − x)

(
xj − x

)
∑i ∑j wij ∑i

(
xj − x

)2 (2)

The mathematical specification of Equation (2) quantifies the strength of a relationship
between xi and its neighbor xj. The spatial weight matrix wij defines the geographical
relationship between xi and xj. In particular, xi − x and xj − x represent the deviation of
xi and xj from the average of x, respectively. Similar to the conventional correlation test,
the value of Moran’s I statistic has a range between −1 and +1. The value of +1 indicates
the perfect positive autocorrelation, implying the clustering pattern of such variable on
geographical space. The zero value of Moran’s I statistic represents the nonexistence of
cluster due to a lack of spatial autocorrelation.

The Moran’s I statistic was conventionally applied to the remote-sensing data for
examining the localized associations between satellite-based indicators and spatial inequal-
ity. In particular, this framework quantifies the magnitude of the geographical clustered
pattern of the economic opportunity [73–80]. In addition, the methods of Getis-Ord General
G and Moran’s I statistic were jointly utilized. For example, both techniques were used for
investigating the spatial pattern of suicide cases in Hong Kong, enabling the identification
of geographical concentration with confirmation derived from statistical inference [81].

4.2. Spatial Econometrics (Spatial Regression)

Spatial econometrics integrates standard econometrical methods with geospatial data.
Specifically, the location plays an important role in generating the spillover effect. Thus,
spatial econometrics extends the conventional form of regression to incorporate the spillover
influence. Spatial regression has two specifications: spatial lag model (SLM) and spatial
error model (SEM). SLM is mathematically defined, as shown in Equation (3).

yi = ρWijyj + Xiβ + ui (3)

The independent variable Xi describes the change in dependent variable yi with
a disturbance value of ui, characterized as a random variable with an independent and
identically distributed property. The spatial spillover effect is generated by yj affecting yi via
the coefficient ρ and the spatial weight matrix W ij. In addition to the typical consideration
on the statistical significance of slope coefficients β, the statistical significance of spillover
coefficient ρ is the key determinant validating the existence of spatial autocorrelation
between yi and yj.
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Alternatively, the spillover effect can be incorporated into regression by using SEM
specification. In particular, this framework allows the spatial influence from a location j to
affect the area i through the cross-boundary relation of disturbance.

yi = Xiβ + ui; ui = λWijuj + εi (4)

Equation (4) mathematically identifies two parts of the relationship. The first part is
the conventional form of the regression equation, defining the combination of independent
variable Xi and disturbance ui jointly determining the dependent variable yi. The second
part specifies a spillover influence originating from uj and affecting ui through the spillover
coefficient λ and the spatial weight matrix W ij. The statistical significance of λ verifies the
existence of spatial influence identified in SEM form by using statistical inference. The
error term is εi, which is independent and identically distributed (i.i.d.).

The theoretical foundations of SLM and SEM were introduced by [82], suggesting the
maximum likelihood estimation as the estimation technique. Alternatively, the generalized
method of moments (GMM) was recommended as the estimation method [83].

The limitation of this study is threefold. First, given that Thailand’s Ministry of
Interior has produced the survey collecting socioeconomic conditions of each village,
the spatial resolution can be extended by using such dataset. Second, the collection of
satellite data publicly accessible has been continuously increasing. Therefore, additional
satellite indicators should be included to enhance the multifaceted explanatory capability.
Third, the analysis should apply machine learning and artificial intelligence algorithms,
especially for the estimation of inequality indicators from satellite data, to gain higher
prediction accuracy.

5. Result

The result analyses are separated into three sections. In the first set of analyses,
the provincial average income of household is the main dependent variable for spatial
clustering and spatial association studies. The second set of analyses used the tambon-level
poverty headcount as the dependent variable for spatial concentration detection and spatial
covariate investigation. On the basis of the main findings obtained from previous parts,
the last section computed the time-series of inequality indicators by using SES and satellite
data and showed the evolution of inequality during 1992–2017.

5.1. Spatial Analysis of Household Income
5.1.1. Cluster Analysis

The spatial technique of Getis-Ord General G was applied to the official SES datasets
covering the period 1994–2017 to detect the clusters of high-income and low-income
households (a map exhibiting the province names is included in Appendices A and B).
As shown in Figure 6, for all datasets, the obtained results identify a concentration of
high-income clusters in Bangkok and surrounding provinces, including the eastern coastal
ones (e.g., Chonburi and Rayong). The concentrations of low-income households were in
northern and northeastern provinces. It is noted that the legend of the map indicates that
the red area is the cluster of the high value, whereas the blue zone is a cluster of the low
one. The number in the parenthesis identifies the number of provinces of each category.
This geographical concentration was unchanged throughout the period of analysis and
indicated the statistically significant level with p-value below 10%, shown in panels (b),
(d) and (f). Thus, these analytical outcomes statistically confirm the consistent pattern of
spatial inequality in Thailand, especially the monocentric growth pole centered at Bangkok
and its vicinity.
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(b) Significance map (1994); (c) Cluster map (2007); (d) Significance map (2007); (e) Cluster map
(2017); (f) Significance map (2017).

5.1.2. Spatial Association between Household Income and Satellite Data

The univariate analysis conducted in Section 5.1.1 was extended to the multivariate
methods in this section. Particularly, the spatial econometrical methods were applied to
examine the relationship of physical and environmental factors that can be detected from
satellites with the average income level of households. The population density derived
from the official population statistics published by the Ministry of Interior was added
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into this analysis to proxy the size of town or city. The mathematical specifications of this
analysis are shown in Equations (5)–(7).

yi = Xiβ + ui (5)

yi = ρWijyj + Xiβ + ui (6)

yi = Xiβ + ui; ui = λWijuj + εi (7)

In particular, Equations (5)–(7) mathematically represent OLS, SLM and SEM, re-
spectively. The provincial average household income derived from SES is the dependent
variable yi. The combination of independent variables Xi includes the logarithm of pop-
ulation density (Ln_Pop_D), the logarithm of NTL (Ln_NTL), the logarithm of average
NDVI (Ln_NDVI), the logarithm of cumulative rainfall (Ln_Rain) and the logarithm of
average LST (Ln_LST). The spatial spillover coefficients of SLM and SEM are ρ and λ,
respectively. Similar to the mathematical representation introduced in Section 4.2, W ij is
the spatial weight matrix, and ui is the disturbance value. The error term is εi, holding an
i.i.d. statistical property. Based on the availability and compatibility of SES and satellite
data, the analysis was conducted using datasets of 2000, 2001, 2002, 2004, 2006, 2007, 2009,
2011, 2013 and 2015.

As shown in Table 2, the regression results obtained from all specifications show
that NTL and population density are consistently and statistically significant and have a
positive association with household income (except in 2001 for NTL and 2007 for population
density). Rainfall has a statistically significant association in some years (i.e., 2002, 2004,
2007, 2009 and 2011), and other variables are not statistically associated with household
income. As indicated by the fluctuating statistical significance of coefficients ρ and λ,
the spatial spillover is not persistently captured by SLM and SEM approaches. Hence,
these outcomes specify that the NTL is the only satellite-based indicator that consistently
represents the spatial distribution of household income in Thailand.

Table 2. Spatial association between household income and satellite data (2000–2002, 2004, 2006, 2007,
2009, 2011, 2013 and 2015). Dependent variable: provincial average household income.

2000 2001 2002

OLS SLM SEM OLS SLM SEM OLS SLM SEM

Ln_Pop_D 0.385 *
(0.196)

0.381 **
(0.188)

0.374 **
(0.184)

0.695 ***
(0.203)

0.710 ***
(0.1870)

0.665 ***
(0.189)

0.445 **
(0.149)

0.450 ***
(0.144)

0.439 ***
(0.142)

Ln_NTL 0.501 ***
(0.123)

0.519 ***
(0.127)

0.511 ***
(0.113)

0.015
(0.119)

0.066
(0.109)

0.028
(0.108)

0.514 ***
(0.101)

0.535 ***
(0.104)

0.515 ***
(0.096)

Ln_NDVI −0.063
(1.060)

−0.075
(1.021)

−0.208
(0.988)

−0.927
(1.337)

−1.152
(1.226)

−0.980
(1.248)

−1.252
(0.977)

−1.261
(0.939)

−1.303
(0.931)

Ln_Rain 0.442
(0.387)

0.477
(0.376)

0.485
(0.355)

0.103
(0.455)

0.050
(0.417)

0.040
(0.415)

1.027 ***
(0.302)

1.075 ***
(0.297)

1.039 ***
(0.285)

Ln_LST 0.2439
(2.906)

0.371
(2.823)

0.153
(2.721)

−0.701
(3.252)

−0.807
(2.989)

−1.081
(3.010)

−1.102
(2.446)

−0.975
(2.356)

−1.107
(2.331)

constant −5.951
(10.388)

−6.589
(10.135)

−5.928
(9.722)

−1.924
(11.745)

−1.512
(10.801)

−0.204
(10.842)

−5.452
(8.484)

−6.200
(8.227)

−5.498
(8.072)

ρ
−0.037
(0.118)

−0.358 ***
(0.124)

−0.052
(0.105)

λ
−0.087
(0.142)

−0.096
(0.142)

−0.030
(0.141)

R-squared 0.512 0.513 0.515 0.345 0.403 0.349 0.656 0.657 0.656

Observations 76 76 76 76 76 76 76 76 76
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Table 2. Cont.

2004 2006 2007

OLS SLM SEM OLS SLM SEM OLS SLM SEM

Ln_Pop_D 0.466 ***
(0.150)

0.435 ***
(0.144)

0.469 ***
(0.150)

0.467 **
(0.193)

0.445 **
(0.179)

0.514 ***
(0.195)

0.117
(0.200)

0.134
(0.182)

0.259
(0.194)

Ln_NTL 0.590 ***
(0.120)

0.540 ***
(0.121)

0.580 ***
(0.122)

0.630 ***
(0.205)

0.446 **
(0.197)

0.518 **
(0.217)

0.814 ***
(0.196)

0.616 ***
(0.189)

0.675 ***
(0.209)

Ln_NDVI −0.099
(0.998)

−0.333
(0.958)

−0.205
(0.987)

0.859
(1.362)

0.965
(1.257)

1.359
(1.299)

−0.388
(1.382)

−0.303
(1.262)

0.498
(1.294)

Ln_Rain 0.937 **
(0.390)

0.879 **
(0.370)

0.857 **
(0.398)

0.546
(0.474)

0.518
(0.436)

0.504
(0.485)

1.413 ***
(0.446)

1.146 ***
(0.414)

1.215 **
(0.484)

Ln_LST 0.349
(2.391)

−0.120
(2.274)

−0.211
(2.393)

0.089
(3.287)

0.815
(3.018)

0.763
(3.225)

2.195
(3.483)

2.122
(3.182)

3.506
(3.299)

Constant −9.434
(8.950)

−7.448
(8.524)

−7.155
(8.978)

−6.365
(12.321)

−8.132
(11.313)

−8.119
(12.118)

−17.975
(12.501)

−15.828
(11.491)

−21.150 *
(12.082)

ρ
0.134

(0.109)
0.274 **
(0.112)

0.290 ***
(0.110)

λ
0.189

(0.132)
0.245 *
(0.129)

0.360 ***
(0.119)

R-squared 0.583 0.593 0.598 0.429 0.477 0.459 0.432 0.492 0.505

Observations 76 76 76 76 76 76 76 76 76

2009 2011 2013

OLS SLM SEM OLS SLM SEM OLS SLM SEM

Ln_Pop_D 0.320
(0.216)

0.314
(0.207)

0.340
(0.211)

0.611 ***
(0.226)

0.604 ***
(0.219)

0.613 ***
(0.216)

0.085
(0.181)

0.080
(0.167)

0.117
(0.181)

Ln_NTL 0.646 ***
(0.227)

0.601 ***
(0.228)

0.652 ***
(0.233)

0.022
(0.245)

0.020
(0.236)

0.022
(0.234)

0.537 ***
(0.100)

0.423 ***
(0.101)

0.482 ***
(0.103)

Ln_NDVI −0.395
(1.479)

−0.326
(1.421)

0.099
(1.414)

0.198
(1.418)

0.177
(1.368)

0.199
(1.359)

0.224
(1.343)

−0.160
(1.249)

0.052
(1.306)

Ln_Rain 1.005 *
(0.538)

0.934 *
(0.520)

0.964 *
(0.541)

1.476 ***
(0.495)

1.466 ***
(0.491)

1.471 ***
(0.473)

0.771 *
(0.428)

0.532
(0.396)

0.549
(0.441)

Ln_LST 0.216
(3.455)

0.263
(3.316)

1.134
(3.359)

−3.049
(3.668)

−3.006
(3.520)

−3.099
(3.513)

0.565
(3.306)

−0.251
(3.060)

−0.213
(3.261)

constant −9.772
(12.723)

−9.355
(12.272)

−12.481
(12.455)

−1.058
(13.000)

−1.121
(12.501)

−0.865
(12.449)

−6.528
(11.829)

−2.605
(10.955)

−2.870
(11.765)

ρ
0.083

(0.125)
0.017

(0.128)
0.237 **
(0.111)

λ
0.148

(0.135)
−0.011
(0.141)

0.172
(0.134)

R-squared 0.381 0.386 0.394 0.364 0.364 0.364 0.451 0.491 0.466

Observations 76 76 76 76 76 76 76 76 76
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Table 2. Cont.

2015

OLS SLM SEM

Ln_Pop_D −0.061
(0.046)

−0.061
(0.043)

−0.052
(0.045)

Ln_NTL 0.200 ***
(0.029)

0.167 ***
(0.030)

0.186 ***
(0.029)

Ln_NDVI −0.076
(0.327)

−0.188
(0.307)

−0.076
(0.313)

Ln_Rain 0.185 *
(0.098)

0.162 *
(0.091)

0.123
(0.099)

Ln_LST 0.512
(0.657)

0.346
(0.609)

0.322
(0.657)

Constant 6.501 ***
(2.390)

5.027 **
(2.380)

7.454 ***
(2.412)

ρ
0.232 **
(0.108)

λ
0.200

(0.132)

R-squared 0.515 0.551 0.534

Observations 76 76 76

Note: *** p < 0.01, ** p < 0.05, * p < 0.1, standard errors in parentheses.

5.2. Spatial Analysis of Poverty Headcount
5.2.1. Cluster Analysis

Similar to the analysis shown in Section 5.1.1, the spatial concentration of poverty
headcount in Thailand was examined by using Getis-Ord General G method. Given that
the poverty headcount statistics was surveyed and produced at subdistrict level, these data
contribute a higher geographical resolution than the average household income derived
from the provincial dataset of SES. Figure 7 illustrates the cluster maps and significance
maps (i.e., p-value maps). With the finer spatial resolution, the cluster analysis yields more
details of the geographical classification of low-income and high-income subdistricts.

In the northern region, most districts have high levels of poverty. The exceptional
case is the cluster of subdistricts located in the urban area (i.e., Mueang District in Thai
language) of Chiang Mai City with low poverty levels. The cluster of low poverty in the
urban zone of Chiang Mai City is influenced by high levels of economic activity in the area,
especially tourism and services businesses. Similarly, the cluster of low-poverty districts
is found in Chiang Rai Province. The high volume of border trade activities in Mae Sai
District has induced low poverty in that area.

In the northeastern region, districts with high poverty levels are found in many
provinces, particularly in Nakhon Phanom, Mukdahan, Yasothon, Amnat Charoen, Ubon
Ratchathani, Sisaket, Chaiyaphum, Nakhon Ratchasima, and Buriram provinces. The
activity of rain-fed rice cultivation in these areas is the main socioeconomic factor, generat-
ing low income for agricultural households. Some exceptions of low-poverty clusters are
found in urban and border districts hosting commercial activities and offering nonfarm
employment for local workers.

In the central region, the low level of poverty is mainly detected, induced by a variety
of economic activities offering various categories of jobs. However, some exceptions are
found. The clusters of high poverty rates are spotted in some districts of Uthai Thani,
Chainat, and Suphan Buri provinces, where agriculture, particularly rice farming, is the
main occupation.
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Figure 7. Cluster analysis using Getis-Ord General G on tambon-level poverty headcount (2013,
2015 and 2017). Source: NSO and authors’ compilation. (a) Cluster map (2013); (b) Significance map
(2013); (c) Cluster map (2015); (d) Significance map (2015); (e) Cluster map (2017); (f) Significance
map (2017).

The large area of the low-poverty cluster is detected in the eastern region. The contin-
uous expansion of industrial production and tourism activity is the main underlying factor
supporting the economic growth in that area.
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A combination of high-poverty and low-poverty clusters is detected in the south-
ern region. The geographical concentration of commercial and tourism activities is the
main foundation constituting two low-poverty clusters. The high-poverty clusters are the
agricultural-based areas. The most southern cluster of high poverty includes the areas of
unrest and insurgency.

5.2.2. Spatial Association between Poverty Headcount and Satellite Data

In accordance with the analysis in Section 5.1.2, the cluster detection was extended to
the multivariate analysis quantifying the spatial association between poverty headcount
and satellite-based indicators. As mathematically denoted in Equations (5)–(7), this spatial
regression analysis applied OLS, SLM and SEM specifications. The dependent variable is
the poverty headcount of each tambon (i.e., subdistrict), derived from the official Thailand
Poverty Map, produced by NSO. All independent variables are identical to the analysis
in Section 5.1.2. In accordance with the spatial resolution of the dependent variable, all
independent variables were computed as the tambon average.

Table 3 exhibits the outcomes of applying OLS, SEM, and SLM techniques to the
datasets of 2013, 2015, and 2017. Compared with the results shown in Section 5.1.2, similar-
ities and differences are found. A similar result is the statistically significant association
between NTL index and household’s socioeconomic condition (i.e., poverty headcount).
The population density is not consistently statistically significant, but LST and rainfall
are associated with poverty headcount. As indicated by the statistical significance of
coefficients ρ and λ, the specifications of SEM and SLM can segregate the influence of
spatial spillover on poverty headcount, improving the estimation of slope coefficients and
explanatory power.

Table 3. Spatial association between poverty headcount and satellite data (2013, 2015 and 2017).
Dependent variable: tambon-level poverty headcount.

Poverty Headcount 2013 Poverty Headcount 2015 Poverty Headcount 2017

OLS SLM SEM OLS SLM SEM OLS SLM SEM

Ln_Pop_D −0.016
(0.041)

−0.008
(0.027)

−0.042
(0.118)

−0.010
(0.018)

0.001
(0.015)

−0.009
(0.015)

−0.043 ***
(0.013)

−0.024 ***
(0.009)

−0.029 ***
(0.009)

Ln_NTL −1.572 ***
(0.061)

−0.435 ***
(0.047)

−1.007 ***
(0.000)

−0.481 ***
(0.025)

−0.130 ***
(0.023)

−0.211 ***
(0.035)

−0.287 ***
(0.013)

−0.081 ***
(0.011)

−0.142 ***
(0.015)

Ln_NDVI −0.161
(0.101)

−0.030
(0.067)

−0.045
(0.508)

0.028
(0.042)

−0.032
(0.036)

−0.044
(0.037)

0.065 **
(0.031)

0.009
(0.022)

0.008
(0.023)

Ln_Rain 3.510 ***
(0.485)

−0.656 **
(0.321)

−1.421
(0.344)

−0.617 ***
(0.197)

−0.317 *
(0.167)

−0.963
(0.684)

−0.029
(0.155)

−0.223 **
(0.113)

0.822
(0.552)

Ln_LST −4.980 ***
(1.462)

−3.961 ***
(0.967)

−2.767 **
(0.021)

−4.478 ***
(0.592)

−1.335 ***
(0.502)

−0.765
(0.649)

−2.893 ***
(0.476)

−0.985 ***
(0.346)

−0.791 *
(0.411)

Constant 10.148 *
(5.7948)

14.167 ***
(3.835)

22.034 ***
(0.002)

20.260 ***
(2.340)

5.527 ***
(1.987)

10.070 ***
(3.200)

12.402 ***
(1.937)

3.897 ***
(1.410)

3.978
(2.539)

ρ
0.952 ***
(0.006)

0.890 ***
(0.014)

0.945 ***
(0.007)

λ
0.973 ***
(0.000)

0.911 ***
(0.013)

0.962 ***
(0.007)

R-squared 0.120 0.614 0.623 0.074 0.335 0.336 0.094 0.521 0.524

Observations 7367 7367 7367 7367 7367 7367 7367 7367 7367

Note: *** p < 0.01, ** p < 0.05, * p < 0.1, standard errors in parentheses.

The environmental factors captured by satellites (i.e., LST and rainfall) can substan-
tially contribute to the variation of the poverty level because the poverty headcount is
directly related to the minimum requirements for subsistence. In particular, the high-
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poverty clusters are located in rural areas, where agriculture is the main economic activity.
Thus, the income of the rural household is highly sensitive to the fluctuation of temperature
and rainfall, as indicated by the regression results in this section. Conversely, the urban
area is composed of various economic activities, simultaneously offering a more variety
and larger demand for labor. Hence, the urban area, proxied by a high illumination of NTL,
is negatively associated with poverty headcount.

5.3. Evolution of Spatial Inequality Estimated by NTL

The results discussed in previous sections show that NTL is the only satellite-based
indicator statistically correlated with socioeconomic measures (i.e., average household
income and poverty headcount). This association is stable in both temporal and spatial
dimensions. Hence, this study examined the evolution of spatial inequality by using NTL
as the proxy of socioeconomic condition. On the basis of conventional inequality measures,
Figure 8 exhibits the evolution of income inequality by using Gini, Theil, and Atkinson
indicators during the period 1992–2017 (the time interval on the horizontal axis is not
constant because the SES has been inconsistently produced). Specifically, these indicators
were computed by using the provincial average household income obtained from SES. All
three indicators show the gradually declining trends.
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Figure 8. Income-based inequality indicators derived from nationwide SES. Source: NSO and
authors’ calculation.

Alternatively, Figure 9 shows the inequality measures calculated by using the NTL
index of all subdistricts. The chronological paths of NTL-based inequality indices are
more fluctuating because they are based on the finer spatial resolution. Theil and Atkinson
indicators obtain from SES and NTL share a similar trend of gradually decreasing. However,
the NTL-based Gini index has an increasing trend, whereas that derived from SES data
is declining.

The spatial inequality can be quantified on the basis of the spatial concentration degree
of NTL. In this study, the Moran’s I method was applied to the nationwide subdistrict-level
NTL index. As introduced in Section 4.1.2, this univariate analysis computes the spatial
autocorrelation of NTL. Hence, the high value of Moran’s I reflects the high concentration
of NTL on the geographical space, whereas the low value of Moran’s I implies the spatial
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scattering distribution. Figure 10 depicts the evolution of Moran’s I during the period
1992–2017. The nationwide degree of geographical concentration, represented by Moran’s I
index, indicates the slightly declining trend of spatial inequality. This result is in accordance
with conventional inequality measures obtained from survey-based data and NTL index
(except the case of NTL-based Gini index).
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Figure 9. NTL-based inequality indicators based on tambon (subdistrict) average. Source:
Authors’ calculation.

Figure 10. Moran’s I of NTL index based on tambon (subdistrict) average. Source: Authors’ calculation.
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6. Discussion

Results obtained from spatial statistical tests statistically affirmed that Bangkok and
its vicinity had been the country’s economic center for many decades. Specifically, this
centralized pattern consistently empowered Bangkok and its vicinity as the area of high
average income and low poverty headcount. These findings are in accordance with hy-
potheses and conclusions stated in previous publications, suggesting the single growth
pole in the case of Thailand [3–5]. Furthermore, some historical studies stated that this
monocentric pattern had been originated for centuries by the centralized administrative
structure [84,85]. Perpetually, this foundation creates the agglomeration forces of Bangkok,
as shown in the current findings obtained from cluster detection.

The spatial econometrical tests showed the spatial associations between survey-based
data (i.e., average income and poverty headcount) and satellite-based indicators. Notably,
the NTL index has the most consistent predictive power to both survey-based indices. This
outcome is consistent with previously published findings, identifying NTL as the potential
proxy of socioeconomic condition. In particular, the NTL index can be applied on a global
scale [7,21–23] and at a national level [6,27,28].

With more significant concerns on the inequality issue from the global perspective [10–12]
and at the regional level [29,86], many studies have developed and applied the inequality
index derived from NTL data. Following the methodology of constructing the NTL-based
inequality proxies introduced by previous research conducted on a global scale [6,7,21,22],
this study formulated the Gini index’s time series and expanded to the computation of
Theil and Atkinson indicators. The obtained outcomes led to the conclusion identical to
those of previous publications, confirming that both NTL-based and survey-based indices
share the same trend [6,7,21,22]. Moreover, similar to the findings of previous publications,
this study detected the different characteristics between NTL-based and survey-based
indices. Specifically, the NTL-based inequality index represents more dynamic fluctuation
than the survey-based one due to its origin of spatial coverage. In the case of Thailand, this
study also revealed that inequality was gradually declining during the period 1992–2017,
affirming the persistent problem of multifaceted disproportionate growth.

All results shown in this study demonstrate that the integration of survey data, satellite-
based indicators, and spatial analysis methods can potentially be the new approach for
timely monitoring of the inequality situation with spatiotemporal details. In the case
of Thailand, this study showed that socioeconomic inequality is in accordance with the
spatial concentration of economic activity. Although the long-term trends of all inequality
measures are declining, the process is slow, and the cluster analysis identifies the persistent
concentration of high and low incomes in each region [3–5]. Specifically, the growth of
urbanization in Thailand has been lower than the regional average, and most of the urban
expansion is still clustering in Bangkok and the central zone. Hence, with the limited
growth of the middle and small cities in all regions, the variety of jobs and economic
opportunities are insufficient, constraining labor mobility and impeding the continuous
structural transformation process. As suggested by some studies in regional develop-
ment [87,88], future policies should focus on establishing the polycentric growth poles
distributing the concentration of economic activity to the middle and small cities in each
region. These suggested regional development schemes can lessen regional inequality and
achieve Sustainable Development Goal 10 (reduced inequalities).

7. Conclusions

The main contribution of this paper is the introduction of the integration of survey
data, satellite-based indicators, and spatial analysis techniques constituting the new multi-
dimensional framework for examining inequality. Conventionally, the disproportionate
growth of Thailand is perceived as a persistent problem. This study quantitatively shows
that the long-term paths of most inequality indicators have been slowly declining. The
obtained results geographically identify the clusters of low and high incomes, enabling the
formulation of area-specific development policies to decentralize the monocentric growth
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pattern. With the increasing availability of open satellite data and open-source software
packages for spatial analysis, this new framework is highly recommended for developing
countries, extending the analytical capability to monitor and analyze inequality with multi-
faceted insights. Furthermore, with the availability of cloud storage and cloud computing,
such as Google Earth Engine, the online platform applying these integrated resources can
potentially provide the open datasets of satellite-based global inequality indicators.
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Appendix B

Table A1. Table of province ID and province name. Source: Authors’ compilation.

Provinc ID Province Name

10 Bangkok Metropolis
11 Samut Prakan
12 Nonthaburi
13 Pathum Thani
14 Phra Nakhon Sri Ayuthaya
15 Ang Thong
16 Lop Buri
17 Singburi
18 Chai Nat
19 Saraburi
20 Chonburi
21 Rayong
22 Chanthaburi
23 Trat
24 Chachoengsao
25 Prachin Buri
26 Nakhon Nayok
27 Sa Kaew
30 Nakhon Ratchasima
31 Buriram
32 Surin
33 Si Sa Ket
34 Ubon Ratchathani
35 Yasothon
36 Chaiyaphum
37 Amnat Chareon
39 Nongbua Lamphu
40 Khon Kaen
41 Udon Thani
42 Loei
43 Nong Khai
44 Maha Sarakham
45 Rot Et
46 Kalasin
47 Sakon Nakhon
48 Nakhon Phanom
49 Mukdahan
50 Chiang Mai
51 Lamphun
52 Lampang
53 Uttaradit
54 Phrae
55 Nan
56 Phayao
57 Chiang Rai
58 Mae Hong Son
60 Nakhon Sawan
61 Uthai Thani
62 Kam Phaeng Phet
63 Tak
64 Sukhothai
65 Phitsanulok
66 Phichit
67 Phetchabun
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Table A1. Cont.

Provinc ID Province Name

70 Ratchaburi
71 Kanchanaburi
72 Suphan Buri
73 Nakhon Pathom
74 Samut Sakhon
75 Samut Songkhram
76 Phetchaburi
77 Phachuap Khiri Khan
80 Nakhon Si Thammarat
81 Krabi
82 Phangnga
83 Phuket
84 Surat Thani
85 Ranong
86 Chumphon
90 Songkhla
91 Satun
92 Trang
93 Phatthalung
94 Pattani
95 Yala
96 Narathiwat

Note: The province ID is based on the classification system specified by Thailand’s Ministry of Interior. The first
digit represents a region of the province.
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