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Simple Summary: Houseflies (Musca domestica L.) are an important medical and livestock
pest that not only annoy animals and humans but can also transmit several human and ani-
mal diseases. Synthetic chemical repellents have been the first option for fly management,
but most have negative impacts on humans, non-target organisms, and the environment
generally. Plant essential oils are active against repelling insect pests and affecting their
life cycles. Repellents from these oils are an important strategy as a new, effective, and
environmentally friendly alternative for housefly management and reducing disease trans-
mission. We investigated the housefly repellency and storage stability of fennel (Foeniculum
vulgare) and anise (Pimpinella anisum) EOs and their combinations using the repellency of α-
cypermethrin as a reference. Combinations (fennel + anise; 1:1) were the most effective and
stable and more stable repellents than single EOs and α-cypermethrin. Most significantly,
all single and combination essential oils were safe for two non-target species: guppies
(Poecilia reticulata) and earthworms (Eudrilus eugeniae). The combinations make excellent,
natural, and stable repellents for housefly management and are suitable to be developed
into environmentally friendly products.

Abstract: Essential oils (EOs) are effective repellents and eco-friendly alternatives. We
tested single and combination EOs of fennel and anise for repellency and stability against
houseflies. All treatments were stored at 27 ◦C for up to 360 days. Efficacies were com-
pared against α-cypermethrin as a reference. Safety bioassay used on two representative
non-target species (guppies and earthworms) confirmed safety. The strongest repellency
and stability, 100% repellency and RC50 of 0.4 mL/m3 on day 1, was achieved by a fennel +
anise EO combination (1:1). After 360 days, these combinations remained effective (95%
repellency), and RC50 = 0.8 mL/m3. The EO combinations were more effective than all
single EOs and α-cypermethrin at all times, showing strong synergy with a synergistic
repellent index of 2.4 to 3.3. This fennel + anise EO combination was more than 24 times
more effective as a repellent than α-cypermethrin. Morphological damage included dam-
aged antennae with twisted flagella and abnormal aristae. All single and combination EOs
were not toxic to the non-targets and could be considered safe, whereas α-cypermethrin
was highly toxic to them. Thus, the fennel + anise EO combination has great potential to be
developed as a safe, natural repellent for managing housefly populations.
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1. Introduction
Medical and livestock insect pests have a negative impact on human and animal

welfare in several modes: they are disruptive, annoying, and vectors of diseases [1]. Among
them, the housefly (Musca domestica L.) is a dominant pest that plays an important role as
both a nuisance and a vector of several pathogens worldwide, including in Thailand [2,3].
It carries important diseases to humans and animals, including diarrhea, food-borne
diseases, avian influenza, Turkey coronavirus, SARS-CoV-2, and COVID-19 [4,5]. Housefly
management is difficult and complicated, especially in sensitive and high-density areas, due
to its short life cycle, but flies readily reproduce on several types of organic matter, and, more
importantly, they are resistant to several synthetic insecticides in several countries [6–8].
Moreover, several synthetic insecticides were found to be highly toxic to humans, animals,
and non-target species, to have strong residual effects in the environment, and to disrupt
the life cycle of natural enemies [9–11]. The over-application of synthetic insecticides did
not impact human and animal well-being, but they affected environmental footprints that
led to water, soil, human, and animal food contamination [12].

Consequently, one approach to the housefly problem is to improve innovative natural
insecticides and repellents based on plant essential oils (EOs) as organic alternatives to syn-
thetic insecticides [13,14]. They are strongly effective and characterized by eco-friendliness,
biodegradability, low mammalian and non-target toxicity, and limited development of resis-
tance, making them a suitable strategy for housefly management [15,16]. Plant EOs are ac-
tive against houseflies as ovicides, oviposition deterrents, larvicides, pupicides, adulticides,
and repellents [17–21]. Repellents play a very important role in disturbing and repelling
flies and are safe in fly management to minimize synthetic insecticide residues [21,22].

Plant EO-based repellents are considered a safe and excellent choice for preventing
flies in sensitive and epidemic areas that have not been used by synthetic insecticides, such
as infant nurseries, kindergartens, nursing homes, cafeterias, postharvest areas, stored
grain and fruit areas, and dairy farms [23–25].

Several reports presented EOs and their chemical compositions that effectively repelled
houseflies. Table 1 lists several examples.

Table 1. Repellent activities of EOs and their compositions against adult houseflies.

EOs/Chemical Compositions Concentrations Repellent Rate (%) Ref.

Geranial 1.0% >90% at 2 h [20]
Trans-anethole 1.0% >90% at 1 h [20]
Lemongrass (Cymbopogon citratus) 5.0% >90% at 1 h [20]
Geranial + trans-anethole (1:1) 2% 100% at 6 h [20]
Peppermint (Mentha piperita) 70 µg/cm2 86% at 4 h [26]
Blue gum (Eucalyptus globulus) 72 µg/cm2 76% at 4 h [26]
Peppermint 0.01 µg/cm2 100% at 1 h [27]
Peppermint + orange (Citrus sinensis) (1:1) 0.025 µg/cm2 100% at 1 h [27]
Peppermint + lemongrass (1:1) 0.01 µg/cm2 100% at 1 h [27]
p-anisaldehyde (anise: Pimpinella anisum, fennel: Foeniculum
vulgare) 0.075% 60–78% at 4 h [28]

Peppermint 1% 96.8% at 24 h [29]
Cinnamon (Cinnamomum verum) 1% 77% at 24 h [29]
Fennel 10% 100% at 5 d [30]
Yellow oleander (Thevetia peruviana) - 91.4% at 24 h [31]
Neem (Azadirachta indica) - 72.1% at 24 h [31]
Eucalyptus (E. camaldulensis) - 78.2% at 24 h [31]
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Against houseflies and other insect pests, EOs blocked vapors and damaged the sense
of smell at antennal hairs [32,33]. EO vapors prevented flies and other insect pests from
landing on and biting pets, animals, and humans [33,34]. EOs from lemongrass and star
anise effectively repelled houseflies: they damaged antennae with abnormal, sunken, and
twisted flagella and aristae [19,20].

Moreover, plant EOs are not only repellents but also safe for humans and are used
in traditional medicine and additive foods, especially EOs from the Apiaceae family [35].
Among them, EOs from fennel and anise are the dominant ones that are effective as
repellents and insecticides against several insect pests [36–38]. They are safe for non-target
organisms, humans, and other animals [39–41].

Here, we investigated repellency and stability against houseflies of two single EOs and
combinations of them—fennel and anise. These two EOs were selected as reported to be
safe for mammals, non-target organisms, and ecosystems and have repellent and traditional
medical properties [38,42]. The stability at several storage times, synergistic effects, and
biosafety of single and combination EOs against a predator fish, guppies (Poecilia latipinna),
and earthworms (Eudrilus eugeniae), and scanning electron micrographs (SEM) of housefly
antennae after exposure were checked. One limitation in EO-based repellent activity and
stability is storage time [43]. The effectiveness of plant EO-based repellents depended
on the volatility of EO constituents and the storage times. When the storage increased,
repellent activity generally decreased [44], so this study was extended to 360 days.

The non-target guppy is a common aquatic predator in tropical areas, including Thai-
land [19,20]. Earthworms are also known as the “farmer’s friend” and are a soil-beneficial
species for increasing soil nutrients and improving soil structure and ecosystems [45]; this
species is widespread throughout tropical areas, including Asia and Thailand [45].

All single and combination EOs showed morphological damage in housefly antennae
observed using optical and scanning electron microscopy. This repellency and stability
showed they were a sustainable and safe alternative for housefly management, especially
in sensitive and epidemic areas.

2. Materials and Methods
2.1. Essential Oils and Chemicals

The anise EO (CAS 8007-70-3) was purchased from Sigma-Aldrich Company Limited,
Saint Louis, MO, USA. Fennel EO was purchased from the Nature In Bottle Corporation
Company Limited, New Delhi, India. The two EOs and their combinations were used to
prepare 70% (v/v) stock solutions in ethanol (purchased from Siam Medical Care Company
Limited, Bang Bon, Bangkok, Thailand). The 10% (w/v) EC α-cypermethrin (Dethroid
10®), purchased from T.S. Inter Lab Limited Partnership Company, Bangkapi, Bangkok,
Thailand, constituted the positive.

Anise has only one major component (trans-anethole, typically >88%, depending on
the source). For the fennel, trans-anethole (80%) was also the main constituent, with minor
constituents being 4-cymene (2.9%), fenchone (2.8%), and limonene (2.7%). In both cases,
other constituents were less than 2% of the total [38,42,46].

2.2. Treatments

Based on our previous studies [19,20], the concentrations of two single EOs and
their combination (anise EO: fennel EO; 1:1) treatments at concentrations of 0.74, 3.7, and
7.4 mL/m3 were held at room temperature (27.0 ± 3.5 ◦C). We prepared filtered samples,
kept them in a 100 mL screw-topped reagent bottle, and assessed them for repellency after
various storage times. At 1, 30, 90, 180, and 360 days, they were tested for repellency
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by exposing flies to them. A control using α-cypermethrin was prepared at the same
concentration and used in the same way.

2.3. Housefly Rearing

Housefly adults were originally from the Entomology Laboratory, School of Agricul-
tural Technology, King Mongkut’s Institute of Technology (KMITL), Ladkrabang, Bangkok,
Thailand. They were bred in the Medical Entomology Laboratory, KMITL, at 25.5 ± 2.5 ◦C,
76.5 ± 2.3% RH, and alternating 12 h light and dark periods. Food for the adults was a
mixture—honey + milk + mineral water—0.5:0.5:0.9 ratio—following Soonwera et al. [20].
After 1–2 days, generation one (G1) from the female adults laid eggs on steamed mackerel;
the eggs developed into larvae, pupae, and adults. Repellent assays used the 3-day-old
adults [20,47].

2.4. Repellency Activity Assay

A dual application method [20] was used to evaluate repellent efficacy against adults
under controlled laboratory conditions. Initially, two test cages (300 mm × 300 mm × 300 mm)
were connected by a rectangular hole (105 mm × 105 mm) (Figure 1). The first test cage was
used for treated flies, and the second test cage was used for untreated flies. The 25 adults
were released into each cage. The concentrations of each treatment and each exposure
time—0.74, 3.7, or 7.4 mL/m3—were used in the treated cage; on the other side, ethanol
was used in the untreated cage.
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connected by a 105 × 105 mm rectangular hole in the middle of the cage.
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The α-cypermethrin positive control was tested concurrently. The number of flies
that landed for at least 5 min at 6 h after exposure to the treated and untreated cages was
recorded. The houseflies might land and then leave or stay on the filter paper until the end
of each time period. All treatments used five replicates. Repellent rates (R) for adult flies
were computed from Equation (1) [20,47]:

R% = (U − T)/(U + T) × 100 (1)

where U is the total number of flies landing on the untreated cage, and T is the total number
of flies landing on the treated cage.

The effective repellent index (ERI) was calculated from Equation (2) [20]:

ERI = RC50 cyper/RC50 treat (2)

where RC50 cyper is the concentration at which 50% of flies were repelled by α-cypermethrin
after 6 h, and RC50 treat is the concentration at which 50% of flies were repelled after
exposure for 6 h.

ERI indicates relative effective repellency, with ERI < 1 signifying that treatment was
less effective than α-cypermethrin, whereas ERI > 1 indicates that treatment was more
effective than α-cypermethrin.

The decreasing repellent index (DRI) was calculated from Equation (3) [20]:

DRI = RC50 day 360/RC50 day 1 (3)

where RC50 day 360 is the concentration at which 50% of flies were repelled after 6 h exposure
to samples stored for 360 days, and RC50 day 1 is the concentration at which 50% of flies
were repelled after 6 h exposure to samples stored for one day.

The synergistic repellent index (SI) was the relative efficacy of combination EOs over a
single EO at the same strength. SI was calculated using Equation (4) [20]:

SI = sum RC50 sing/RC50 com (4)

where RC50 sing is the 50% repellency concentration of each single EO and RC50 com is the
50% repellency concentration of the EO combination.

SI indicates relative synergy, with SI > 1 implying a positive synergy, whereas SI < 1
signifies a negative one.

2.5. Antennal Structural Changes from Optical and Scanning Electron Microscopy (SEM)

After the repellent bioassay, abnormal external and internal changes in antennae
of treated versus untreated flies were observed by a stereomicroscope (Nikon® Model
C-PS, Nikon cell innovation Co., Ltd., Tokyo, Japan) and photographed with a digital
camera (Nikon® DS-Fi2, Nikon cell innovation Co., Ltd., Tokyo, Japan) at the Microscopy
Centre, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand [19,20].
Scanning electron micrographs were captured at the Chulalongkorn University, Scientific
and Technological Research Equipment Centre, Pathumwan, Bangkok, Thailand [19,21].

SEM micrographs of fly heads—to view external ultrastructural changes in fly anten-
nae following single and combination EO treatments versus controls. After 24 h, the heads
of treated flies were cut off and placed in 70% ethanol for 30 min, then thoroughly washed
with the same solution. Afterward, the head was postfixed in 95% (v/v) ethanol for 90 min
and dehydrated with 100% ethanol.

Then, all head samples were dried with a CO2 critical point drier. Each dehydrated
sample was mounted on aluminum stubs with double-sided adhesive tape and sputtered
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with gold. Micrographs were captured (JSM-6610LV SEM, JEOL Company Limited, Tokyo,
Japan).

2.6. Safety Bioassay of Non-Target Species: Guppies and Earthworms

The toxicity of single and combination EOs was tested against non-target guppies
following Soonwera et al. [48]. Guppies were purchased from an organic farm, Bigblue Inter
Farm, Thailand (13◦49′07.3′′ N 100◦46′46.1′′ E). Fifty fish were kept in a plastic container
(200 × 300 × 300 mm) containing 25 L of clean water at 28.8 ± 1.7 ◦C, 78 ± 2% RH, and
12 h alternating light and dark periods. The concentrations of each treatment were 100, 200,
and 400 ppm. Ten adult fish were put in a plastic container (350 mm × 200 mm in height)
containing 5 L of clean water. Five sets of fish were tested with α-cypermethrin. Guppy
mortality was checked after 14 days post-treatment.

The toxicity assay against non-target earthworms followed OECD guidelines [49]
and Jaitai [50]. The well-developed earthworms were obtained from an organic farm in
Pak Chong, Thailand (14◦42′45′′ N 101◦25′19′′ E). Thirty earthworms were kept in a black
plastic container (500 mm in diameter and 250 mm in height) containing 3 kg of artificial
soil (natural fertilizer, cow manure, coconut coir, and organic soil—1:1:1:1 [50] under the
same conditions as the guppy Bioassay). The concentration of each treatment was 100, 200,
and 400 µL/kg of artificial soil. The 0.5 kg of wet artificial soil mixed with each treatment
(pH 6.5–7.0; 65% soil moisture) was put in a black plastic container (200 mm in diameter
and 180 mm in height), and ten earthworms were added. Each treatment was tested five
times simultaneously with α-cypermethrin. Earthworm mortalities were checked after
14 days post-treatment.

2.7. Statistical Analysis

Statistical analysis used IBM’s SPSS Statistical Software Package version 28 (Armonk,
NY, USA). We used a completely randomized design (CRD) for these bioassays. The
mean repellent rate of all treatments and mean mortalities of non-target bioassays were
analyzed by one-way analysis of variance (ANOVA), and Tukey’s test (p < 0.05) was used
to evaluate the mean differences across multiple treatment groups [51]. Repellency, i.e., the
concentration of a substance that repelled 50% (RC50) of adults by 6 h of exposure, was
determined by probit analysis. Simple regression assessed the repellent efficacy against
adult flies using generalized linear models with a binomial distribution. A correlation
coefficient, R2, was used to evaluate linearity [52].

3. Results
3.1. Repellent Activity

Figure 2 shows regressions for repellent activity versus stored time of single and
combination EOs at doses of 0.74, 3.7, and 7.4 mL/m3 against houseflies. All regressions
had R2 ≈ 1.0, signifying that stored time strongly affected repellent activity. All treatments
were repelled effectively at day 1, and the rate decreased with stored times from 30 to
360 days. These regressions showed that high doses (7.4 mL/m3) of all treatments were
more effective repellents than lower doses (3.4 and 0.74 mL/m3). Both single EOs (fennel
and anise) were less effective (with a repellent rate between 49 and 95%) than combination
EOs (fennel EO + anise EO, 1:1) with repellent rates from 80 to 100%. Among the single
EOs, fennel was more effective (with rates from 57 to 95%) than anise (rates from 49 to
88%). At 0.74 mL/m3 for exposures up to 360 days, combination EOs showed higher rates
of 80 to 84%, while both single EOs showed rates from 49 to 72%, and α-cypermethrin only
had rates from 14 to 31% (Figure 2A). At doses between 3.7 and 7.4 mL/m3 (Figure 2B,C),
combination EOs showed 100% repellency at day 1, and the repellency after a long storage
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period with the repellent rate after 360 days ranged between 93 and 96%. Both single EOs
repelled only 60 to 95% at the same dose. In contrast, α-cypermethrin repelled only 20 to
58%. All treatments were more effective than α-cypermethrin over the whole experimental
period, in which treatments were stored for 360 days and then tested for storage period.
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of 0.74 mL/m3 (A), 3.7 mL/m3 (B), and 7.4 mL/m3 (C). For each test period, treatments marked by
the same letter did not differ significantly (Tukey’s post hoc test p > 0.05).

Figure 3 shows the repellent activity against houseflies measured by RC50, ERI, and
DRI. Combination EOs were more effective (with RC50 from 0.4 to 0.8 mL/m3) than either
single EO (with RC50 from 0.6 to 0.9 mL/m3). The combination EOs at day 1 showed the
highest repellent activity with an RC50 of 0.4 mL/m3 and an ERI of 38, or over 38 times
more effective than α-cypermethrin. From days 30 to 360, combination EOs also showed
ERIs from 24 to 28 and were clearly more effective than α-cypermethrin. Fennel showed
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higher activities (RC50 from 0.6 to 0.9 mL/m3) than anise (RC50 from 0.7 to 0.9 mL/m3)
or from 13 to 25 times more effective than α-cypermethrin, which had the lowest activity
in all experiments, with RC50 from 9.2 to 25.2 mL/m3. Repellent activity in all treatments
decreased over time. All repellents tested lost their DRIs by 1.3 to 2.0 times over 360 days.
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against houseflies at exposure times varying from 1 to 360 days.

Moreover, the repellency efficiency of combination EOs against houseflies over all
periods was more than that of either single EO, with an SI of 2.4 to 3.8. The highest synergy
was achieved by combination EOs after 30 days with an SI of 3.8. The synergistic effect
decreased slightly with longer times, with SI down to 2.4 (Figure 4).
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Figure 4. Synergistic Repellency Index (SI) of combination EOs against houseflies versus storage
times from 1 to 360 days when compared to the single EO.

3.2. Morphological Changes

After 6 h of exposure to single and combination EOs, morphological alterations and
abnormal antennae were recorded by optical and scanning electron micrographs (SEM)—
see Figure 5A–G. The flies treated with fennel EO (C,D), anise EO (E,F), and anise + fennel
EOs (G,H) showed remarkable shape aberrations and morphological damage of antenna
with twisted scape and pedicel, distorted and wrinkled flagellum, lost setae, and distorted
arista. The antennae of untreated controls showed a normal structure with scape, pedicel,
and flagella (A,B).
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Figure 5. Optical and scanning electron micrographs showing the difference between untreated
housefly antennae with optical and scanning electron microscopes (A,B), with the normal structure of
scape (Sc), pedicel (Pd), flagellum (F), and arista (Ar) versus altered shapes (yellow and white arrow)
and morphological damage of antennae with twisted scape and pedicel, distorted and wrinkled
flagellum, lost setae, and distorted arista after exposure to fennel EO (C,D), anise EO (E,F), and
anise + fennel EOs (G,H) (red arrow). Note: The housefly head has compound eyes (C), bristles (Br),
antennae and mouth parts (Mp), and palpi (Pp).

3.3. Toxicity to Guppies and Earthworms

Toxicity of single EOs and combination EOs at 100 to 400 µL/L doses was assessed
based on adult mortality after 14-day exposure (Table 2). All EOs were not toxic for guppies,
whereas α-cypermethrin had the strongest toxicity, with up to 100% mortality at 400 µL/L.
However, 100–200 µL/L doses were also toxic, with 70 to 98% mortality. Similarly, all EOs
were not toxic for earthworms. In contrast, α-cypermethrin at 400 µL/kg was toxic to
earthworms, with a 100% mortality (Table 3).
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Table 2. Toxicity of treatments and α-cypermethrin on non-target aquatic predator guppy at 14 days
after testing.

Treatment
Conc.
(µL/L)

Mortality Rate (%) ± SD

Storage Period (Day)

Day 1 Day 30 Day 90 Day 180 Day 360

Fennel EO 100 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c

200 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c

400 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c

Anise EO 100 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c

200 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c

400 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c

Fennel EO +
Anise EO (1:1) 100 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c

200 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c

400 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c

α-cypermethrin 100 80.0 ± 4.5 b 76.0 ± 5.8 b 75.0 ± 5.2 b 75.0 ± 5.8 b 70.0 ± 4.8 b

200 98.0 ± 5.6 a 98.0 ± 6.8 b 98.0 ± 5.6 b 96.0 ± 6.5 b 94.0 ± 5.5 b

400 100 a 100 a 100 a 100 a 100 a

ANOVA F0.05, Df total, p-value **, 59, p < 0.01 **, 59, p < 0.01 **, 59, p < 0.01 **, 59, p < 0.01 **, 59, p < 0.01

Mean percentage mortality rates in each column followed by the same letter are not significantly different
(p > 0.05: Tukey’s test). ** Significantly different at p < 0.01.

Table 3. Toxicity of treatments and α-cypermethrin to non-target earthworms at 14 days after testing.

Treatment
Conc.
(µL/kg)

Mortality Rate (%) (Mean ± SD)

Storage Period (Day)

Day 1 Day 30 Day 90 Day 180 Day 360

Fennel EO 100 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c

200 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c

400 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c

Anise EO 100 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c

200 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c

400 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c

Fennel EO +
Anise EO (1:1) 100 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c

200 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c

400 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c 0 ± 0 c

α-cypermethrin 100 88.0 ± 6.9 b 87.0 ± 4.8 b 87.0 ± 5.2 b 85.0 ± 4.8 b 84.0 ± 5.5 b

200 98.0 ± 5.6 a 97.0 ± 6.8 a 96.0 ± 6.6 a 95.0 ± 5.5 a 94.0 ± 4.6 a

400 100 a 100 a 100 a 100 a 100 a

ANOVA F0.05, Df total, p-value **, 59, p < 0.01 **, 59, p < 0.01 **, 59, p < 0.01 **, 59, p < 0.01 **, 59, p < 0.01

Mean percentage mortality rates in each column followed by the same letter are not significantly different
(p > 0.05: Tukey’s test). ** Significantly different at p < 0.01.

4. Discussion
The current global trend of growing human health concerns and insecticide resistance

to synthetic insecticides in managing insect pests and insect vectors is increasing the
pressure on scientists to find alternative natural pesticides and repellents [23,24,53,54].
Natural repellents from EOs represent a good option for developing new alternatives due
to their widely presented repellent activity, which is biodegradable and non-mutagenic for
mammals [20,24–27]. They are not only harmless for humans and some non-target species,
but they are also highly effective repellents against houseflies [20,26,27]. They are also
used as the primary prevention strategy to reduce the housefly populations in sensitive
and outbreak areas [20,21,55,56]. It is significant that single EOs and combination EOs,
including fennel and anise EOs, showed great potential as natural alternative repellents
against houseflies and other vectors [26,27,56]. Many combination EOs from different plants
showed synergies, where multiple EOs were better than single EOs, showing one strategy
for improving repellent efficiency [20,24]. Moreover, using synergistic combinations in
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housefly management to reduce the total concentration or dose of the EOs led to higher
repellent activity than that of a single EO [20,25]. Therefore, these combinations showed
great potential as alternative repellents against adult flies.

In this study, a combination of EOs from fennel and anise (1:1) acted in synergy and
showed stronger repellent activity against adult flies, based on several metrics, including
low RC50, higher repellency rate, ERI, SI, and low DRI, when compared with fennel and
anise alone at the same doses and exposures. These results were consistent with our
previous work and several others showing high synergies reported for the combination of
lemongrass + star anise (Illicium verum) (1:1), geranial + trans-anethole (1:1), and lemongrass
+ trans-anethole (1:1) used at 25 ◦C and 70% RH for 1 day that showed were 100% effective
against housefly adults after 1 h exposure and repellency 34% more than a single EO [20].
Similarly, combinations of mentha + orange (1:1) (7:3), mentha + eucalyptus (7:3), and
mentha + lemongrass (7:3) at a concentration of 0.025 µL/cm3 showed 100% repellency
with 95% repellency concentration (RC95) around 0.01 mL/cm3 [27]. Phasomkusolsil
et al. [44] also reported that a combination of (1:9) lemongrass + soybean oil against Aedes
aegypti and Anopheles dirus mosquito adults showed high repellency with protection times
up to 78 min. Benelli et al. [56] reported that a 1:2 mixture of ajwain (Trachyspermum
ammi) + anise and a 1:1 mixture of wild celery (Smyrnium olusatrum) + anise showed strong
larvicidal activity against filariasis vector larvae (Culex quinquefasciatus).

Storage times, volatility, and sensitivity to chemical reactivity limited the physical,
biological, and quality of EO-based repellents [44,45]. In this study, our DRI of the combi-
nation showed the lowest (DRI = 0.8) and the highest repellent activity, although it was
stored for up to 360 days. The physical properties of the combination, such as odor and
color, were similar to those of the fresh combination on day 1. Similarly, Phasomkusolsil
et al. [44] showed that lemongrass EO + soybean oil and citronella grass EO + soybean
oil strongly repelled two mosquito vectors (Ae. aegypti and An. dirus) and were stable (no
change in color of odor), stored at 25–30 ◦C for 180 days.

More importantly, our ERI showed that the combination of EOs from fennel + anise
(1:1) was 28 times more potent than α-cypermethrin. Similarly, the combinations of EOs
from lemongrass + star anise (1:1), lemongrass + nutmeg (Myristica fragrans) (1:1), and
nutmeg + star anise (1:1) were 2 to 5 times stronger insecticides against housefly adults than
α-cypermethrin [18–21]. We concluded that housefly adults had developed resistance to
α-cypermethrin because it lost efficacy as both a repellent and an insecticide. We confirmed
the findings of Abbas and Hafez [57], who showed that α-cypermethrin was less effective
against adults and showed increased resistance ratios for housefly females from 46-fold at
5 generations to 470-fold, with similar changes for males. Similarly, Li et al. [58] reported
that, in China, a field strain of housefly developed resistance to cypermethrin with a 153-
fold resistance ratio. Zhang et al. [59] also reported long-term trends from 2003–2005 to
2021–2022, showing resistance to beta-cypermethrin increasing from 14% to 26%.

Optical and electron micrographs showed morphological alterations and abnormal
antennae in housefly adults after treatment with single and combination EOs. The volatility
and lipophilicity of the major component (trans-anethole) of both fennel and anise EOs
were the main factors allowing the EOs to penetrate, interfere with, and disrupt the olfac-
tory capabilities of the fly antennae [20,24,33,60,61], so the combination exhibited a high
repellency for all tested exposures. The repellent receptors of insects differ; e.g., ticks detect
repellents on the tarsi of the first legs, whereas houseflies, mosquitoes, and honeybees have
repellent receptors on the antennae and palpi of the mouthpart [13,62]. The key compounds
were attached to and blocked the sense of smell at olfactory or chemosensory receptors of
mosquito antennae [13,34,62].
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Similarly to Soonwera et al. [19,20], we observed similar significant morphological
damage in housefly antennae and mouthparts following treatments with the EO combi-
nation of lemongrass + trans-anethole (1:1) and geranial + trans-anethole (1:1). Similarly,
anise EO nanoemulsion destroyed the compound eyes and thoraces of a red flour beetle
(Tribolium castaneum: Tenebrionidae) [60]. EOs from Zanthoxylum limonell + d-limonene
(1:1) and star anise + trans-anethole (1:1) destroyed anal papillae and respiratory siphons
of larvae and respiratory trumpets of pupae of two mosquitoes (Ae. aegypti and Ae. al-
bopictus) [48]. Furthermore, Mougthipmalai et al. [62] reported morphological damage
caused by d-limonene, geranial, and trans-anethole on exochorionic cuticles of eggs of these
mosquitoes. Also, external changes in housefly eggs were caused by EOs from lemongrass,
star anise, geranial, trans-anethole, lemongrass + trans-anethole (1:1), and star anise +
geranial (1:1) [21].

In addition, EOs and their major components not only interfered with and disrupted
the smell of fly antennae [20,62], but their major components showed several actions
on flies and other pests [63,64]. The doses or concentrations of EOs for repelling insect
pests and their mechanism of action are very important for improving new alternative
repellents and safety for all mammals [20]. Anise EO was highly toxic to the nerve system
of the two-spotted spider mite (Tetranychus urticae: Tetraychidae) because it inhibited
acetylcholinesterase (AChE) and glutathione-S-transferase (GST). It also destroyed insect
cuticles, which digested the protease enzyme [65]. Similarly, fennel EO and trans-anethole
inhibited AChE in houseflies [66] and destroyed the cell cytoplasmic membrane of shigella
bacteria (Shigella dysenteriae) [61]. Therefore, the fennel and anise EO combination was not
only a repellent, but it also affected the physiology and killed houseflies.

However, EOs and their main compositions are considered eco-friendly and safe for
pollinators and non-target predators, including fish and earthworms [19–21,48,62]. In
this study, all EOs were not toxic for earthworms after 14 days. On the other hand, α-
cypermethrin had the strongest toxicity to earthworms in the whole experiment. Benelli
et al. [42] and Pavela [67] confirmed that fennel EO at 120 mg kg−1 and anise EO at
100 mg kg−1 were not toxic for earthworms, but α-cypermethrin at only 25 mg kg−1 had
the strongest toxicity to earthworms. Similarly, EOs from Apiaceae (Oliveria decumbens) and
three species of Lamiaceae (Satureja sahendica, S. khuzestanica, and S. rechingeri) at 200 mg
kg−1 were not toxic for earthworms at 14 days after exposure, whereas α-cypermethrin at
0.1 mg kg−1 showed extreme toxicity with 100% mortality [68]. Similarly, all EOs were not
toxic for guppies at 14 days after exposure. In contrast, 400 µL/L of α-cypermethrin led to
100% mortality at the same exposure time.

Similarly, EOs and their combinations, such as EOs from lemongrass, star anise,
lemongrass + star anise (1:1), lemongrass + trans-anethole (1:1), star anise + geranial (1:1) at
1000–5000 ppm, were less toxic for guppies, with mortalities less than 10%, and LT50 ranged
from 170 to 400 h after 10 days of exposure, whereas α-cypermethrin showed 98–100%
mortality and LT50 ranged from 0.9 to 1.2 h [19–21]. Several monoterpenes and their com-
binations, such as geranial, trans-cinnamaldehyde, and geranial + trans-cinnamaldehyde
(1:1) at 50–300 ppm, were less toxic to guppies, with mortalities less than 8%, while 1%
α-cypermethrin caused 100% mortality [64]. EFSA [69] confirmed that α-cypermethrin had
strong neurotoxic effects on mammals and humans, with acute oral LD50 of more than
150 mg/kg in rats and 15 mg/kg in beagles. However, doses of α-cypermethrin as low
as 0.015 mg/kg in Wistar rats caused oxidative stress and DNA damage in blood plasma,
liver, kidney, and brain tissue [70]. More importantly, cypermethrin was reported to cause
long-term adverse effects on mammalian health, such as blood disorders, reproductive
organ disorders, nervous system damage, and genetic disorders [69–72]. On the other
hand, single EOs and their combinations of fennel and anise were safe and non-toxic to
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the tested guppies and earthworms. They were also non-toxic and thus safe for humans,
pets, poultry, horses, and other domestic animals at acute oral LD50 of 3120 mg/kg in rats
(fennel EOs) and 2090 mg/kg in rats (trans-anethole) [16,35,41,72]. They did not induce any
genetic and DNA damage or cytotoxic effects on human cells [40,41]. They are permitted
as food and feed additives in traditional and modern medicines and for other culinary and
pharmacological purposes in several regions [40,41,73,74].

5. Conclusions
Our study suggests that the combination of EOs from fennel + anise (1:1) acted in

synergy and remained effective after storage for 360 days at normal conditions. It is more
effective than α-cypermethrin. It was thus suitable for further development into a natural
repellent agent for housefly management. It was safe for non-target species, earthworms,
and guppies. The repellency of this combination in field settings should be further studied.
This combination could be used in alcoholic or aqueous solutions for managing housefly
populations in households, farms, and other sensitive areas.
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55. Pavela, R.; Žabka, M.; Bednář, J.; Tříska, J.; Vrchotová, N. New knowledge for yield, composition and insecticidal activity of
essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.). Ind. Crops Prod. 2016, 83, 275–282.
[CrossRef]

56. Benelli, G.; Pavela, R.; Iannarelli, R.; Petrelli, R.; Cappellacci, L.; Cianfaglione, K.; Afshar, F.H.; Nicoletti, M.; Canale, A.; Maggi, F.
Synergized mixture of Apiaceae essential oils and related plant-bore compounds: Larvicidal effectiveness on the filariasis vector
Culex quinquefasciatus Say. Ind. Crops Prod. 2017, 96, 186–195. [CrossRef]

57. Abbas, N.; Hafez, A.M. Alpha-cypermethrin resistance in Musca domestica: Resistance instability, realized heritability, risk
assessment, and insecticide cross-resistance. Insects 2023, 14, 233. [CrossRef] [PubMed]

https://doi.org/10.1021/jf020504b
https://www.ncbi.nlm.nih.gov/pubmed/12428949
https://doi.org/10.1155/2014/842674
https://doi.org/10.1016/j.aspen.2014.02.001
https://doi.org/10.3390/molecules21081069
https://www.ncbi.nlm.nih.gov/pubmed/27537869
https://doi.org/10.1016/j.fct.2017.12.014
https://doi.org/10.1007/s11356-023-31349-z
https://www.ncbi.nlm.nih.gov/pubmed/38103135
https://doi.org/10.1016/j.indcrop.2018.07.048
https://doi.org/10.1111/1541-4337.12006
https://uruae.org/siteadmin/upload/AE1216210.pdf
https://doi.org/10.3390/plants10102194
http://www.agriman.doae.go.th/home/Research/Herb57/5.pdf
https://doi.org/10.1016/j.heliyon.2022.e09346
https://www.oecd.org
https://ph02.tci-thaijo.org/index.php/RMUTP/article/view/40414/33351
https://ph02.tci-thaijo.org/index.php/RMUTP/article/view/40414/33351
https://doi.org/10.1897/05-320R.1
https://www.ncbi.nlm.nih.gov/pubmed/16704080
https://doi.org/10.1023/A:1009662915320
https://doi.org/10.1016/j.indcrop.2015.06.050
https://doi.org/10.1146/annurev.ento.51.110104.151146
https://www.ncbi.nlm.nih.gov/pubmed/16332203
https://doi.org/10.1016/j.indcrop.2015.11.090
https://doi.org/10.1016/j.indcrop.2016.11.059
https://doi.org/10.3390/insects14030233
https://www.ncbi.nlm.nih.gov/pubmed/36975918


Insects 2025, 16, 23 16 of 16

58. Li, Q.; Huang, J.; Yuan, J. Status and preliminary mechanism of resistance to insecticides in a field strain of housefly (Musca
domestica, L). Rev. Bras. Entomol. 2018, 62, 311–314. [CrossRef]

59. Zhang, Y.; Wang, Y.; Zhao, N.; Lun, X.; Zhao, C.; Lui, Q.; Meng, F. Long-term trends in housefly (Musca domestica L.) insecticide
resistance in China. Pestic. Biochem. Physiol. 2024, 201, 105880. [CrossRef] [PubMed]

60. Hashem, A.S.; Awadalla, S.S.; Zayed, G.M.; Maggi, F.; Benelli, G. Pimpinella anisum essential oil nanoemulsions against Tribolium
castaneum -insecticidal activity and mode of action. Environ. Sci. Pollut. Res. 2018, 25, 18802–18812. [CrossRef] [PubMed]

61. Diao, W.R.; Hu, Q.P.; Zhang, H.; Xu, J.G. Chemical composition, antibacterial activity and mechanism of action of essential oil
from seeds of fennel (Foeniculum vulgare Mill.). Food Control. 2014, 35, 109–116. [CrossRef]

62. Moungthipmalai, T.; Puwanard, C.; Aungtikun, J.; Sittichok, S.; Soonwera, M. Ovicidal toxicity of plant essential oils and their
major constituents against two mosquito vectors and their non-target aquatic predators. Sci. Rep. 2023, 13, 2119. [CrossRef]
[PubMed]

63. Dagar, P.; Ramakrishna, W. Plant based and synthetic products as mosquito repellents: Effects, target sites and their mechanism
of action on mosquitoes. Int. J. Trop. Insect Sci. 2024, 44, 1509–1530. [CrossRef]

64. Sittichok, S.; Passara, H.; Sinthusiri, J.; Moungthipmalai, T.; Puwanard, C.; Murata, K.; Soonwera, M. Synergistic larvicidal and
pupicidal toxicity and the morphological impact of dengue vector (Aedes aegypti) induced by geranial and trans-cinamaldehyde.
Insects 2024, 15, 714. [CrossRef] [PubMed]

65. El-Sayed, S.M.; Ahmed, N.; Selim, S.; Al-Khalaf, A.A.; Nahhas, N.E.; Abdel-Hafez, S.H.; Sayed, S.; Emam, H.M.; Ibrahim, M.A.R.
Acaricidal and Antioxidant Activities of anise oil (Pimpinella anisum) and the oil’s effect on protease and acetylcholinesterase in
the two-spotted spider mite (Tetranychus urticae Koch). Agriculture 2022, 12, 224. [CrossRef]

66. Levchenko, M.A.; Silivanova, E.A.; Khodakov, P.E.; Gholizadeh, S. Insecticidal efficacy of some essential oils against adults of
Musca domestica L. (Diptera: Muscidae). Int. J. Trop. Insect Sci. 2021, 41, 2669–2677. [CrossRef]

67. Pavela, R. Essential oils from Foeniculum vulgare Miller as a safe environmental insecticide against the aphid Myzus persicae Sulzer.
Environ. Sci. Pollut. Res. 2018, 25, 10904–10910. [CrossRef]

68. Pavela, R.; Morshedloo, M.R.; Mumivand, H.; Khorsand, G.J.; Karami, A.; Maggi, F.; Desneux, N.; Benelli, G. Phenolic
monoterpene-rich essential oils from Apiaceae and Lamiaceae species: Insecticidal activity and safety evaluate on non-target
earthworms. Entomol. Gen. 2020, 4, 421–435. [CrossRef]

69. European Food Safety Authority (EFSA). Peer review of the pesticide risk assessment of the active substance cypermethrin. EFSA
J. 2018, 16, 5402. [CrossRef]
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