

โครงการประชุมวิชาการระดับชาติและนานาชาติ ครั้งที่ 8

8 National and International Conference

Theme: Research to Serve Society

(e-Conference)

PROCEEDINGS

25 June 2021

Huachiew Chalermprakiet University Bangphli District, Samutprakarn Thailand

8th Huachiew Chalermprakiet University International Conference

Friday, 25th June 2021

Theme: Research to Serve Society

Main Host Huachiew Chalermprakiet University

Editor-in-Chief

Dr. Jonathan Rante Carreon Huachiew Chalermprakiet University

Editorial and Steering Committee

รองศาสตราจารย์ ดร.ธีรโชติ เกิดแก้ว
รองศาสตราจารย์ ดร.จตุรงค์ บุณยรัตนสุนทร
ผู้ช่วยศาสตราจารย์ ดร.ธเนศ อิ่มสำราญ
ผู้ช่วยศาสตราจารย์ ดร.ชุติระ ระบอบ
ผู้ช่วยศาสตราจารย์ ดร.วิชาญ จันทร์วิทยานุชิต
พันเอกหญิง ผู้ช่วยศาสตราจารย์ ดร.ภัสรา อาณัติ
อาจารย์ ดร.ธงไชย สุรินทร์วรางกูร

Prof. Dr. Archimedes T. David Prof. Dr. Elvira Balinas

Prof. Dr. Olga Angelinetta P. Tulabut

Assoc. Prof. Dr. Thanda Soe Dr. Ryan Mark Molina

Assoc. Prof. Dr. Randolf Asistido Assoc. Prof. Dr. Maria Teresa Asistido

Assoc. Prof. Dr. Elmer De La Cruz Bondoc

Assoc. Prof. Dr. Janette Rodriguez Assoc. Prof. Dr. Janette R. Rodriguez

Assoc. Prof. Dr. Elmer De La Cruz Bondoc

Assoc. Prof. Dr. Ruby R. Pineda-Henson

Assoc. Prof. Dr. Raymond L. Patterson Assoc. Prof. Dr. Ma. Cristina G. Naguit

Assoc. Prof. Dr. H. Yat Rospia Brata, MSi

Assoc. Prof. Dr. Agus Yuniawan Isyanto, MP

Assoc. Prof. Dr. Ida Farida, SH, MH Assoc. Prof. Dudung Mulyadi, SH, MH

Mr. Andi Rustandi, SPd, MPd

Dr. Chavalin Svetanant

Dr. Sean Ford

Assoc. Prof. Dr. Fan Jun Asst. Prof. Dr. Naris Wasinanon มหาวิทยาลัยหัวเฉียวเฉลิมพระเกียรติ มหาวิทยาลัยหัวเฉียวเฉลิมพระเกียรติ มหาวิทยาลัยหัวเฉียวเฉลิมพระเกียรติ มหาวิทยาลัยหัวเฉียวเฉลิมพระเกียรติ มหาวิทยาลัยหัวเฉียวเฉลิมพระเกียรติ วิทยาลัยแพทยศาสตร์พระมงกุฎเกล้า

มหาวิทยาลัยราชภัฏสวนสุนันทา

Angeles University Foundation (Philippines) Angeles University Foundation (Philippines)

Angeles University Foundation (Philippines)

University of Mandalay (Myanmar)

STI West Negros University (Philippines)

STI West Negros University (Philippines)
STI West Negros University (Philippines)

Holy Angel University (Philippines)

Universitas Galuh (Indonesia)

Universitas Galuh (Indonesia)

Universitas Galuh (Indonesia) Universitas Galuh (Indonesia)

Universitas Galuh (Indonesia)

Macquarie University (Australia)

University of Wisconsin – Eau Claire (USA)

Huachiew Chalermprakiet University (Thailand) Huachiew Chalermprakiet University (Thailand)

International Double-blind Peer Review Committee

1. Kingdom of Thailand

Asst. Prof. Dr. Pongpatchara Kawinkoonlasate

Dr. Suthida Soontornwipat

Dr. Korawan Deekawong

Dr. Chiara Ayn Lamarca

Dr. Khwanchanok Suebsook

2. Republic of the Philippines

Prof. Dr. Elvira Balinas

Prof. Dr. Olga Angelinetta P. Tulabut

Prof. Dr. Archimedes T. David

Prof. Dr. Lilibeth Cuison

Prof. Dr. Chere Yturralde

Prof. Dr. Carmela Dizon

Prof. Dr. Jennifer Santillan

Prof. Dr. Joel Tubera

Prof. Dr. Jarrent R. Tayag

Dr. Alfredo Feliciano

Dr. Rhem Rick Corpuz

Dr. Annalyn Navarro

Dr. Ryan Mark Molina

Assoc. Prof. Dr. Mima M. Villanueva

Assoc. Prof. Dr. Randolf Asistido

Assoc. Prof. Dr. Maria Teresa Asistido

Assoc. Prof. Dr. Janette R. Rodriguez

Assoc. Prof. Dr. Elmer De La Cruz Bondoc

Assoc. Prof. Dr. Ruby R. Pineda-Henson

Assoc. Prof. Dr. Raymond L. Patterson

Assoc. Prof. Dr. Ma. Cristina G. Naguit

Assoc. Prof. Dr. Precious Jean M. Marquez

Asst. Prof. Dr. Warren Galas Moyao

3. Republic of Indonesia

Assoc. Prof. Dr. H. Yat Rospia Brata, MSi Universitas Galuh

Assoc. Prof. Dr. Iskhak Said, MM, MPd

Assoc. Prof. Dr. Ida Farida, SH, MH

Assoc. Prof. Dr. Maman Herman

Asst. Prof. Dr. Dani Lukman

4. United States of America

Dr. Sean Ford

5. Australia

Dr. Chavalin Svetanant

6. Union of Myanmar

Assoc. Prof. Dr. Thanda Soe

Affiliation

Huachiew Chalermprakiet University Huachiew Chalermprakiet University Huachiew Chalermprakiet University Huachiew Chalermprakiet University Huachiew Chalermprakiet University

Affiliation

Angeles University Foundation STI West Negros University STI West Negros University STI West Negros University STI West Negros University Holy Angel University University of Baguio

Affiliation

Universitas Galuh

Universitas Galuh

Universitas Galuh

Universitas Galuh

Affiliation

University of Wisconsin - Eau Claire

Affiliation

Macquarie University

Affiliation

University of Mandalay

คณะกรรมการประเมินผลงานวิชาการ (Peer Review Committee) สาขาวิทยาศาสตร์สุขภาพ

ศ.ดร.พรอนงค์ อร่ามวิทย์ ศ.ดร.กาญจน์พิมล ฤทธิเดช ศ.ดร.วราภรณ์ จรรยาประเสริฐ ศ.ดร.พีรพรรณ ตันอารีย์ รศ.ดร.บุษบา จินดาวิจักษณ์ รศ.ดร.วรรธนะ ชลายนเดชะ รศ.ดร.สรา อาภรณ์ รศ.ดร.ปรางทิพย์ ฉายพุทธ รศ.ดร.สาธิต พุทธิพิพัฒน์ขจร รศ.ดร.สุเทพ ศิลปานันทกุล รศ.ดร.ปานทิพย์ วัฒนวิบูลย์ รศ.ดร.กอบชัม สถิรกุล รศ.ดร.วันดี กฤษณพันธ์ รศ.ดร.วีณา เที่ยงธรรม รศ.ดร.อาภาพร เผ่าวัฒนา รศ.ดร.รัชนา ศานติยานนท์ รศ.ดร.ภาคภูมิ เต็งอำนวย รศ.ดร.พรรณทิพา ศักดิ์ทอง รศ ดร วราภรณ์ จัรทรจำนงค์ รศ.ดร.สมรรถชัย จำนงค์กิจ รศ.ดร.สุกัลยา อมตฉายา รศ.ดร.วิวรรธน์ อัครวิเชียร รศ.ดร.สุภาวดี ดาวดี รศ.ดร.ดาริวรรณ เศรษฐีธรรม รศ.ดร.สุพินดา คูณมี รศ.ดร.อุไรวรรณ อินทร์ม่วง รศ.ดร.จุฬารัตน์ ปริยชาติกุล รศ.ดร.สุทธิพรรณ กิจเจริญ รศ.ดร.น้อมจิตต์ นวลเนตร รศ ดร อรสร สารพับโชติวิทยา รศ.ดร.อรทัย ตั้งวรสิทธิชัย รศ.ดร.กุหลาบ รัตนสัจธรรม

จุฬาลงกรณ์มหาวิทยาลัย จหาลงกรณ์มหาวิทยาลัย In a and was a second มหาวิทยาลัยมหิดล จุฬาลงกรณ์มหาวิทยาลัย จฬาลงกรณ์มหาวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย มหาวิทยาลัยเกษตรศาสตร์ มหาวิทยาลัยเชียงใหม่ มหาวิทยาลัยขอนแก่น มหาวิทยาลัยขอนแก่น มหาวิทยาลัยขอนแก่น มหาวิทยาลัยขอนแก่น มหาวิทยาลัยขอนแก่น มหาวิทยาลัยขอนแก่น มหาวิทยาลัยขอนแก่น มหาวิทยาลัยขอนแก่น มหาวิทยาลัยขอนแก่น บหาวิทยาลับบเรศวร มหาวิทยาลับนเรศวร มหาวิทยาลัยบูรพา

Extraction of *Coccinia grandis* leaf for development of insect bites cream formulation

Thamonwan Bubchaiya^{1*}, Rassamichan Kanavan², Chawalinee Asawahame³, Aranya Jutiviboonsuk⁴
Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University, Samutprakarn, Thailand,
*Email: thamonwan_yok@hotmail.com

Abstract

Coccinia grandis (L.) Voigt, also known as Ivy gourd, is a plant commonly found in Thailand. It has been used in primary health care for relieving inflammation from insect bites. The fresh leaves are crushed and applied on the affected area, that is inconvenient. Therefore, this research aimed to extract the leaf of C. grandis, to evaluate the *in-vitro* anti-inflammatory activity of the extracts, and to formulate a topical cream for insect bites treatment. The dried powder of plant sample was extracted with 90% ethanol using ultrasonic bath, then the extract was sent to liquid-liquid extraction with hexane/water. Anti-inflammatory activity of these extracts was evaluated by inhibiting the breakdown of the bovine serum albumin method compared with a drug, diclofenac sodium. Ivy gourd cream was formulated and evaluated for its physical properties and stability. The results showed that hexane fraction exhibited potent anti-inflammatory activity (87.44%) which was more potent than diclofenac sodium (27.23%). Two concentrations (1% and 5%) of Ivy gourd cream were formulated. Both formulas had soft, creamy texture with smooth and shiny surface. The skin was slightly yellow when applied the cream, but it could be easily washed out. The freeze-thaw stability study indicated that these creams had good stability.

Keywords: Coccinia grandis, β -sitosterol, anti-inflammation, Ivy gourd cream, insect bites

1. Introduction

Coccinia grandis (L.) Voigt is known as Ivy gourd. It is a member of the Cucurbitaceae family in the genus Coccinia. The fresh leaf is used as a medicinal plant in Thailand for relieving inflammation from insect bites. Several pharmacological activities of the plant extract have been reported such as antioxidant, antihyperglycemic, anti-ulcer, antimicrobial, and anti-inflammatory activities (Pekamwar, 2013, p.54-58, Amir Hossain, 2014, p.65-71, Varuna, 2018, p.188-200). β -sitosterol is a phytosterol compound which was found in many parts of ivy gourd, including leaf (Alagarraja, 2017, p.54-58). The strong anti-inflammatory activity of β -sitosterol was observed by membrane stabilization of human red blood cell and inhibition of protein denaturation methods which indicated that β -sitosterol promoted the neutralizing lysosomal enzymes or stabilizing the lysosomal membrane (Ushir Yogrsh, 2013, p.85-89). According to Thai traditional medicine, fresh leaves of *C. grandis* are crushed and applied on affected area which is inconvenient. Therefore, Ivy gourd extract was formulated as cream for ease of use and promoting the use of Thai herb.

2. Objectives

The objectives of the study are to evaluate the *in-vitro* anti-inflammatory activity of the leaf extracts of *C. grandis* and to formulate a topical cream for insect bites treatment.

3. Materials and methods

3.1 Chemicals

Anisaldehyde, bovine serum albumin, β -sitosterol, and dimethyl sulfoxide were purchased from Sigma-Aldrich. Diclofenac sodium was obtained from Henan Dongtai Pharmaceutical Co., Ltd. Dichloromethane, ethanol, ethyl acetate, hexane, methanol, and sulfuric acid are analytical grade reagents.

3.2 Plant material

Fresh *C. grandis* was purchased from Thipgasorn market, the local market at Bang Phli district, Samut Prakan province, Thailand. The plant was identified and compared to virtual herbarium (TCD0017100) in JSTOR Plant Science.

3.3 Preparation of plant extracts for qualitative analysis

The size of fresh leaves used in the study was 6-13 cm wide and 4-10 cm long. The fresh leaves were washed with tap water and dried at 50°c using hot air oven before grounded into coarse powder by blender. The plant powder (3 g each) was extracted with 60 mL hexane, dichloromethane, absolute ethanol, ethanol-water (9:1), or water using ultrasonic bath for 30 minutes at room temperature, then each extract was filter and dried in vacuum rotary evaporator to obtain CGHe, CGDi, CGEt, CGEW, and CGWa extracts, respectively. Each extract was redissolved to 10 mL volume with its solvent and subjected to qualitative analysis using thin-layer chromatography.

3.4 Condition of thin-layer chromatography

Chromatography was performed on 10 x 10 cm aluminum plates precoated with 0.2 mm layers of silica gel 60 F254 (E. Merck, Germany). Sample and standard solutions, each $10 \mu L$, were applied on the plates as 2 mm wide bands, positioned 10 mm from lower edge of the plate. The mobile phase was dichloromethane-ethyl acetate 9:1 (v/v). Pre-saturated chamber (30 minutes at room temperature) was used for development of the plates with a distance of 95 mm from lower edge of the plate using ascending mode. The developed plates were detected with color reaction using anisaldehyde-sulfuric acid reagent, the color reaction occurred when heat at 105° c for 15 minutes. β -sitosterol (1.25 mg/mL) was used as reference standard.

3.5 Preparation of plant extracts for cream formulation

The plant powder (640 g) was extracted with 14.7 L ethanol-water (9:1) using ultrasonic bath for 2 hours at room temperature, then the extract was filtered. 8.7 L of the filtrate was dried in vacuum rotary evaporator at 40°c, 165-72 mbar to obtain CGEW-F. Another 6 L of the filtrate was sent to liquid-liquid extraction with hexane/water. The aqueous phase was separated and dried in vacuum rotary evaporator at 40°c, 65 mbar to obtain CGW-F. While hexane phase was dried in vacuum rotary evaporator at 40°c, 335 mbar to obtain CGH-F.

3.6 Albumin denaturation inhibition assay

Protein denaturation has been correlated with the inflammatory disorders. Several non-steroidal anti-inflammatory drugs (NSAIDs) such as, indomethacin, ibufenac, flufenamic acid, and salicylic acid enhanced the ability to prevent heat denaturation of bovine serum albumin (BSA) at pathological pH 6.2-6.5 (Grant, 1970, p.715-722).

The reaction mixture consisted of 0.9 mL of 5% bovine serum albumin, 2.8 mL of phosphate buffer saline pH 6.3, and 2.0 mL of 100 µg/mL of the extract. Diclofenac sodium was used as reference. The mixture was incubated at 37°C for 15 minutes then heated at 70°C for 5 minutes. Absorbance of the mixture was measured at 660 nm. The percentage inhibition of albumin denaturation was calculated using the equation as shown below.

%inhibition = [1 - (absorbance of sample/absorbance of control)] x 100

3.7 Formulation of Coccinia grandis cream

3.7.1 Development of cream bases

Five different cream bases were prepared. The oil phase consisted of stearic acid, cetyl alcohol, liquid paraffin, isopropyl palmitate, and Span 60 was melted at 75°C and stirred. The water phase consisted of propylene glycol, Tween 60, Tween 80, sorbitol, and distilled water was heated at 78°C. The water phase was poured into the oil phase with continuously stirring until the mixture congealed. Then preservative was added, and the mixture was stirred to become homogenous cream. The physical properties (color, odor, consistency, washability, and pH) of these cream bases and their stability using centrifugation test were evaluated. The cream base with good properties and stability was chosen to prepare *C. grandis* cream.

3.7.2 Preparation of *C. grandis* cream

The selected cream base was prepared using the same method described above (3.7.2). *C. grandis* extract was dissolved in liquid paraffin before added into the cream base to produce two concentrations (1% and 5%) of *C. grandis* cream.

3.8 Evaluation of physical properties and stability of C. grandis cream

3.8.1 Physical appearance

Physical appearance of cream was evaluated by observing its color, odor, and consistency.

3.8.2 Dye test

Lake blue color was mixed with cream. A drop of cream was examined under a microscope. The cream is o/w type if blue globules are appeared with colorless continuous phase. In contrast, the cream is w/o type if colorless globules disperse in blue continuous phase.

3.8.3 pH measurement

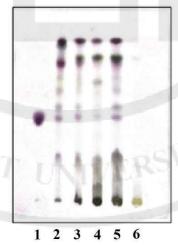
Cream (5 g) was dispersed in 50 mL distilled water and sent to measure pH value using pH meter at room temperature.

3.8.4 Viscosity measurement

The viscosity was determined using Brookfield viscometer model LVDV-II+Pro with T-bar spindle at speed of 12 rpm and 25°C for 1 minute.

3.8.5 Accelerated stability study using centrifugation test

The cream was centrifuged for 30 minutes at 3,500 rpm. Then it was inspected for signs of creaming.


3.8.6 Freeze-thaw stability study

The cream was stored in airtight glass containers and stability tests were performed on 4 cycles of temperature testing, -20°C (48 hours) and 45°C (48 hours). Then physical properties, viscosity and pH of cream were evaluated.

4. Results and discussions

The extraction of C. grandis leaves using 5 different solvents obtained CGHe, CGDi, CGEt, CGEW, and CGWa extracts. The chemical compositions of these extracts were investigated by TLC. β-sitosterol is a phytosterol compound which was found in many parts of C. grandis such as root, aerial parts, fruit, stem, and leaf (Alagarraja, 2017, p.54-58). Paniagua-Pérez (2017) reported a potent anti-inflammatory activity of β -sitosterol in acute inflammation in rodents using reversed passive Arthus reaction in the rat (an immune reaction) and mouse ear edema assay (a non-specific reaction). Therefore, β -sitosterol was used as a reference compound. TLC chromatograms (fig. 1) showed that β -sitosterol was found in CGHe, CGDi, CGEt, and CGEW extracts, except in CGWa extract. The chemical composition of CGEW extract was greater than that of any other extract. In addition, the solubility of β -sitosterol in some organic solvents was reported the increasing of solvent's polarity the decreasing of its solubility. However chemical structure of solvent also influenced the solubility. β -sitosterol has a hydroxyl group at 3-position of hydrophobic steroidal skeleton which makes it weakly polar. Moreover, hydrogen bond is an interaction between solvent and solute that provides the solvation of solute. The solubility of β -sitosterol in ethanol was higher than that in n-hexane (Wei, 2010, p.2917-2919). As a result, 90% ethanol was used as solvent for further extraction.

The plant powder (640 g) was extracted with 14.7 L of 90% ethanol using ultrasonic bath for 2 hours at room temperature to yield 124.95 g of CGEW-F extract (19.52% w/w of plant powder). The CGEW-F extract (50 g) was then liquid-liquid extracted with hexane/water to yield 20.64 g of CGW-F extract (7.79%w/w of plant powder) and 14.19 g of CGH-F extract (5.09% w/w of plant powder).

Figure 1 TLC chromatogram of *C. grandis* extracts. (1) β - sitosterol, (2) CGHe extract, (3) CGDi extract, (4) CGEt extract, (5) CGEW extract, and (6) CGWa extracts.

Anti-inflammatory activities of CGEW-F, CGW-F, and CGH-F extracts were evaluated by albumin denaturation inhibition assay and diclofenac sodium was used as

reference. At the concentration of 100 μ g/mL, CGH-F extract presented 87.44% inhibition of albumin denaturation which was greater than diclofenac sodium (27.23%). Whereas CGEW-F and CGW-F extracts showed 6.39% and 21.06% inhibition, respectively. Accordingly, CGH-F extract was sent to formulate the *C. grandis* cream.

The composition of 5 cream bases (I-V) was shown in table 1. All cream bases were odorless, white, and easily removable by water. Cream base I leave a greasy feeling on the skin while II-V leave a little greasiness. Cream base II and III presented grittiness felt but IV and V did not. Cream base V showed the easiest spread on skin. The pH values of I-V were 5.01, 4.45, 4.43, 5.04, and 5.13, respectively. Phase separation was not observed after the centrifugation test of all cream bases. Cream base V which demonstrated good properties and stability was chosen to prepare *C. grandis* cream.

Table 1 Composition of cream base I -V

Ingredients (g)	Cream base I	Cream base II	Cream base III	Cream base IV	Cream base V
Stearic acid	2.00	14.00	14.00		- 0
Cetyl alcohol	3.00	1.00	3.00	5.00	7.00
Stearyl alcohol	3.00		-	7.00	5.00
Liquid paraffin	12.00	-	-	5.00	5.00
Isopropyl palmitate	0.50	1.00	1.00	-	-
Propylene glycol	-	-	-	10.00	10.00
Paraben concentration	0.15	0.15	0.15	1.00	1.00
Span 60	1.00	2.00	2.00	-	-
Sorbitol 70%	3.00	3.00	3.00	-	-
Tween 60	1.50	1.50	1.50	-	-
Tween 80	-	-	-	5.00	5.00
Distilled water q.s.	100.00	100.00	100.00	100.00	100.00

Table 2 presents the composition of *C. grandis* cream. The CGH-F extract was dissolved in liquid paraffin before blended into cream base to produce 1% and 5% *C. grandis* creams. The dye test revealed that both creams were o/w type, and their physical properties are presented in table 3. The results showed that increasing of the extract concentration caused the increasing of pH and viscosity of cream. The centrifugation test indicated the stability of *C. grandis* creams and cream base. The color, odor, consistency, pH, and washability of 1% and 5% *C. grandis* creams did not change after the 4 cycles of freeze-thaw stability study. Nevertheless, the increasing of viscosity of both creams was observed. The viscosity of 1% *C. grandis* cream increased from 872,000 to 948,733 centipoise while viscosity of 5% *C. grandis* cream increased from 978,000 to 1,145,000 centipoise. Accordingly, the extract of *C. grandis* leaf can be formulated as 1% and 5% creams with good physical properties and good stability.

Table 2 Composition of *C. grandis* cream

Ingredients (g)	C. grandis Cream 1%	C. grandis Cream 5%
CGH-F extract	1.70	8.50
Liquid paraffin	3.57	17.85
Cream base V q.s.	170.00	170.00

Physical properties	C. grandis Cream 1%	C. grandis Cream 5%	Cream base	
Color	Green brown	Dark green brown	White	
Odor	Characteristic	Characteristic	Odorless	
Consistency	Smooth and non-grease	Smooth and non-grease	Smooth and non-grease	
pН	6.15	7.09	5.13	
Washability	Good	Good	Good	
Viscosity (centipoise)	872,000	978,000	863,000	
Centrifugation test (phase separation)	No	No	No	

Table 3 Physical properties of *Coccinia grandis* creams

5. Conclusion

The hexane fraction which was extracted from the 90% ethanolic extract of C. grandis leaves, contained the anti-inflammatory compound, β -sitosterol. It presented 87.44% inhibition of albumin denaturation at the concentration of 100 μ g/mL. The formulation of 1% and 5% C. grandis creams produced good physical property creams with good stability under 4 cycles of freeze-thaw study.

6. Acknowlagement

The authors thank Faculty of Pharmaceutical Science, Huachiew Chalermprakiet University, Thailand for supporting this research.

7. References

- Alagarraja, M., Rasika, T., Monika, G., Rajesh, R., Rajavel, E., Arunachalam, G., Senthilkumar, M.K., Sumathi, M., & Roa, KNV. (2017). Updated review on pharmacognosy, phytochemistry & pharmacological studies of *Coccinia indica*. *Int J Res Pharm Sci*, 8(1), 54-58.
- Amir Hossain, SK., Uddin, SR.N., Abu Salim, MD., & Haque, R. (2014). Phytochemical and pharmacological screening of *Coccinia grandis* Linn. *Journal of Scientific and Innovation Research*, 3(1), 65-71.
- Grant NH, Alburn HE, Kryzanauska C. (1970). Stabilization of serum albumin by anti-inflammatory drugs. *Biochem Pharmacol*, 19, 715-722.
- Paniagua-Pérez, R., Flores-Mondragón, G., Reyes-Legorreta, C., Herrera-López, B., Cervantes-Hernández, I., Madrigal-Santillán, O., Morales-González, J.A., Álvarez-González, I., & Madrigal-Bujaidar, E. (2017). Evaluation of the anti-inflammatory capacity of beta-sitosterol in rodent assays. *Afr J Tradit Complement Altern Med*, 14(1), 123-130.
- Pekamwar, S.S., Kalyankar, T.M., & Kokate, S.S. (2013) Pharmacological activities of *Coccinia grandis*: review. *J Appl Pharm Sci*, 3(5), 114-119.
- Ushir Yogrsh, V., Morankar Pravin, G., & Dhake Avinash, S. (2013). Phytochemical compositions and *in-vitro* anti-inflammatory activity of *Plectranthus mollis*. *J Adv Pharm Edu & Res*, 3(2), 85-89.

Varuna, V. (2018). Coccinia grandis (L) Voigt-review. World Journal of Pharmaceutical Research, 7(12), 188-200.

Wei, D., Wang, L., Liu, C., & Wang, B. (2010). β-Sitosterol solubility in selected organic solvents. J Chem Eng Data, 55, 2917-2919.

