กรุณาใช้ตัวระบุนี้เพื่ออ้างอิงหรือเชื่อมต่อรายการนี้: https://has.hcu.ac.th/jspui/handle/123456789/3677
ชื่อเรื่อง: Clustering of Road Traffic Injuries During the 7-day Songkran Holiday, Thailand: A Spatial Analysis
ผู้แต่ง/ผู้ร่วมงาน: Sopit Tubtimhin
Wongsa Laohasiriwong
Somsak Pitaksanurat
Kittipong Sornlorm
Amornrat Luenam
โสภิต ทับทิมหิน
วงศา เล้าหศิริวงศ์
สมศักดิ์ พิทักษานุรัตน์
กิตติพงษ์ สอนล้อม
อมรรัตน์ ลือนาม
Khon Kaen University. Faculty of Public Health
Khon Kaen University. Faculty of Public Health
Khon Kaen University. Faculty of Public Health
Huachiew Chalermprakiet University. Faculty of Public and Environmental Health
คำสำคัญ: Spatial analysis (Statistics)
การวิเคราะห์เชิงพื้นที่ (สถิติ)
Remote sensing
การวิเคราะห์ข้อมูลระยะไกล
Road Traffic Injury
การบาดเจ็บจากการจราจรทางถนน
Saṅkranʻ -- Thailand
สงกรานต์ – ไทย
Songkran Festival
เทศกาลสงกรานต์
Songkran holiday
วันหยุดสงกรานต์
วันที่เผยแพร่: 2019
แหล่งอ้างอิง: Kathmandu Univ Med J (KUMJ) 2019;17(67):184-189.
บทคัดย่อ: Background : Road traffic injury (RTI) is a major cause of fatalities around the world and Thailand is the second leading country. Objective: To determine the spatial pattern of road traffic injury during the 7-day Songkran holiday in Thailand. Method: This study utilized the data obtained from the Information Technology for Emergency Medical System (ITEMS) covering the nationwide road traffic injury during the Songkran festival, Thai New Year holiday (April 9-15, 2015). The Moran's I was used to identify global auto correlation within the country whereas the Local Indicators of Spatial Association (LISA) analysis was administered for analyzing the spatial distribution of RTIs and determining the spatial autocorrelation and correlation of numbers motor vehicles and length of road networks and road traffic injury. Result: During Songkran holiday 2015, the univariate Moran's I of RTIs distribution among provinces in Thailand showed a slightly positive spatial autocorrelation, as the Moran's I was 0.1701, with statistical significance at 0.05. Local indicators of spatial association indicated seven hotspots and five cold spots. In addition, the number of motor vehicles, and length of trunk road (super highway), tertiary roads, secondary roads, and primary roads had positive spatial autocorrelation with road traffic injury, with Moran's I values of 0.173, 0.117, 0.219, 0.162, and 0.279, respectively. Conclusion: This study demonstrates that local indicators of spatial association could detect the spatial pattern of road traffic injury. The number of motor vehicles, length of all roads served as new parameters for determining road traffic injury hotspots.
รายละเอียด: สามารถเข้าถึงบทความฉบับเต็มได้ที่ : https://pubmed.ncbi.nlm.nih.gov/33305745/
URI: https://has.hcu.ac.th/jspui/handle/123456789/3677
ปรากฏในกลุ่มข้อมูล:Public and Environmental Health - Articles Journals

แฟ้มในรายการข้อมูลนี้:
แฟ้ม รายละเอียด ขนาดรูปแบบ 
Clustering-of-Road-Traffic-Injuries-During-the-7-day-Songkran-Holiday-Thailand.pdf61.92 kBAdobe PDFดู/เปิด


รายการทั้งหมดในระบบคิดีได้รับการคุ้มครองลิขสิทธิ์ มีการสงวนสิทธิ์เว้นแต่ที่ระบุไว้เป็นอื่น