DSpace Repository

Clustering of Road Traffic Injuries During the 7-day Songkran Holiday, Thailand: A Spatial Analysis

Show simple item record

dc.contributor.author Sopit Tubtimhin
dc.contributor.author Wongsa Laohasiriwong
dc.contributor.author Somsak Pitaksanurat
dc.contributor.author Kittipong Sornlorm
dc.contributor.author Amornrat Luenam
dc.contributor.author โสภิต ทับทิมหิน
dc.contributor.author วงศา เลาหศิริวงศ์
dc.contributor.author สมศักดิ์ พิทักษานุรัตน์
dc.contributor.author กิตติพงษ์ สอนล้อม
dc.contributor.author อมรรัตน์ ลือนาม
dc.contributor.other Khon Kaen University. Faculty of Public Health en
dc.contributor.other Khon Kaen University. Faculty of Public Health en
dc.contributor.other Khon Kaen University. Faculty of Public Health en
dc.contributor.other Huachiew Chalermprakiet University. Faculty of Public and Environmental Health en
dc.date.accessioned 2025-02-16T04:23:09Z
dc.date.available 2025-02-16T04:23:09Z
dc.date.issued 2019
dc.identifier.citation Kathmandu Univ Med J (KUMJ) 2019;17(67):184-189. en
dc.identifier.uri https://has.hcu.ac.th/jspui/handle/123456789/3677
dc.description สามารถเข้าถึงบทความฉบับเต็มได้ที่ : https://pubmed.ncbi.nlm.nih.gov/33305745/ en
dc.description.abstract Background : Road traffic injury (RTI) is a major cause of fatalities around the world and Thailand is the second leading country. Objective: To determine the spatial pattern of road traffic injury during the 7-day Songkran holiday in Thailand. Method: This study utilized the data obtained from the Information Technology for Emergency Medical System (ITEMS) covering the nationwide road traffic injury during the Songkran festival, Thai New Year holiday (April 9-15, 2015). The Moran's I was used to identify global auto correlation within the country whereas the Local Indicators of Spatial Association (LISA) analysis was administered for analyzing the spatial distribution of RTIs and determining the spatial autocorrelation and correlation of numbers motor vehicles and length of road networks and road traffic injury. Result: During Songkran holiday 2015, the univariate Moran's I of RTIs distribution among provinces in Thailand showed a slightly positive spatial autocorrelation, as the Moran's I was 0.1701, with statistical significance at 0.05. Local indicators of spatial association indicated seven hotspots and five cold spots. In addition, the number of motor vehicles, and length of trunk road (super highway), tertiary roads, secondary roads, and primary roads had positive spatial autocorrelation with road traffic injury, with Moran's I values of 0.173, 0.117, 0.219, 0.162, and 0.279, respectively. Conclusion: This study demonstrates that local indicators of spatial association could detect the spatial pattern of road traffic injury. The number of motor vehicles, length of all roads served as new parameters for determining road traffic injury hotspots. en
dc.language.iso en_US en
dc.subject Spatial analysis (Statistics) en
dc.subject การวิเคราะห์เชิงพื้นที่ (สถิติ) en
dc.subject Remote sensing en
dc.subject การวิเคราะห์ข้อมูลระยะไกล en
dc.subject Road Traffic Injury en
dc.subject การบาดเจ็บจากการจราจรทางถนน en
dc.subject Saṅkranʻ -- Thailand en
dc.subject สงกรานต์ – ไทย en
dc.subject Songkran Festival en
dc.subject เทศกาลสงกรานต์ en
dc.subject Songkran holiday en
dc.subject วันหยุดสงกรานต์ en
dc.title Clustering of Road Traffic Injuries During the 7-day Songkran Holiday, Thailand: A Spatial Analysis en
dc.type Article en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account