Please use this identifier to cite or link to this item: https://has.hcu.ac.th/jspui/handle/123456789/2887
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPanthip Rattanasinganchan-
dc.contributor.authorKritsanee Maneewong-
dc.contributor.authorKittipat Sopitthummakhun-
dc.contributor.authorปานทิพย์ รัตนศิลป์กัลชาญ-
dc.contributor.authorกฤษณี มณีวงศ์-
dc.contributor.authorกิตติพัฒน์ โสภิตธรรมคุณ-
dc.contributor.otherHuachiew Chalermprakiet University. Faculty of Medical Technologyen
dc.contributor.otherChomthong Hospital. Division of Medical Laboratory and Clinical Pathologyen
dc.contributor.otherHuachiew Chalermprakiet University. Faculty of Science and Technologyen
dc.date.accessioned2024-09-24T14:27:30Z-
dc.date.available2024-09-24T14:27:30Z-
dc.date.issued2023-
dc.identifier.urihttps://has.hcu.ac.th/jspui/handle/123456789/2887-
dc.descriptionProceedings of the 10th National and International Conference on "Research to Serve Society", 29 June 2023 at Huachiew Chalermprakiet University, Bangphli District, Samutprakarn, Thailand. (e-Conference on Zoom) p. 36-46.en
dc.description.abstractThe laboratory blood tests in this study were collected from patients diagnosed with diabetes mellitus (DM) who were admitted to a public hospital in Chiang Mai Province. The aim of this study is to examine the correlation between laboratory blood tests and the incidence of complications associated with DM using a data mining technique. The J48 classifier was applied to construct a decision tree model and verify the precision of the simulation model. The laboratory blood tests were collected from 1,736 patients diagnosed with DM who were admitted to a public hospital in Chiang Mai Province, Thailand in 2020. The results showed that among the total DM cases, 54.55% were diagnosed with chronic kidney disease stage 2 (CKD 2) or higher, consistent with the microalbuminuria category where early and advanced kidney damage was observed in 66.82% of total DM cases. Interestingly, clinical factors such as BMI, eGFR and microalbuminuria are related to DM complications, particularly with respect to kidney dysfunctions. The decision tree model, simulated with the J48 classifier, achieves a high predictive accuracy with a correct classified instance rate of 87.44%. Verification parameters were used to validate the quality of the model in each class of chronic kidney dysfunction which classifier exhibited the high %True positive rates of more than 70% in all targeted CKD classes (CKD 1-5) and with Precision of more than 80% indicating low %False positive rate. These findings highlight the advantages of clinical data analysis using data mining techniques.en
dc.language.isoen_USen
dc.rightsมหาวิทยาลัยหัวเฉียวเฉลิมพระเกียรติen
dc.subjectเลือด -- การตรวจen
dc.subjectBlood -- Examinationen
dc.subjectเลือด -- โรค -- การวินิจฉัยen
dc.subjectBlood -- Diseases -- Diagnosisen
dc.subjectการวินิจฉัยโรคทางห้องปฏิบัติการen
dc.subjectDiagnosis, Laboratoryen
dc.subjectเบาหวานen
dc.subjectDiabetes Mellitusen
dc.subjectเหมืองข้อมูลen
dc.subjectData miningen
dc.subjectน้ำตาลในเลือดสูงen
dc.subjectกลูโคสในเลือดสูงen
dc.subjectHyperglycemiaen
dc.titleCorrelation analysis of laboratory blood tests and complications in Diabetes Mellitus using data mining techniqueen
dc.typeProceeding Documenten
Appears in Collections:Medical Technology - Proceeding Document

Files in This Item:
File Description SizeFormat 
Correlation-analysis-of-laboratory-blood-tests.pdf458.65 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.