Please use this identifier to cite or link to this item: https://has.hcu.ac.th/jspui/handle/123456789/3698
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNoppamas Akarachantachote-
dc.contributor.authorSeree Chadcham-
dc.contributor.authorKidakan Saithanu-
dc.contributor.authorนพมาศ อัครจันทโชติ-
dc.contributor.authorเสรี ชัดแช้ม-
dc.contributor.authorกิดาการ สายธนู-
dc.contributor.otherHuachiew Chalermprakiet University. Faculty of Science and Technologyen
dc.contributor.otherBurapha University. College of Research Methodology and Cognitive Scienceen
dc.contributor.otherBurapha University. Department of Mathematicsen
dc.date.accessioned2025-03-01T03:18:30Z-
dc.date.available2025-03-01T03:18:30Z-
dc.date.issued2017-
dc.identifier.citationInternational Journal of Data Analysis Techniques and Strategies 9,1 (2017) : 34-45en
dc.identifier.otherhttps://doi.org/10.1504/IJDATS.2017.083063-
dc.identifier.urihttps://has.hcu.ac.th/jspui/handle/123456789/3698-
dc.descriptionสามารถเข้าถึงบทความฉบับเต็ม (Full Text) ได้ที่ : https://www.inderscienceonline.com/doi/abs/10.1504/IJDATS.2017.083063?journalCode=ijdatsen
dc.description.abstractThe variable importance in projection or VIP index obtained by the partial least squares regression (PLS-R) has become a crucial measurement of each predictor to relieve a problem of measuring multiple variables per sample. It has been applied to classification task although it is designed for regression. The new variable importance index combining concept of PLS-R and boxplot cutoff threshold, VIIC-BCT, was here particularly presented for classification of high dimensional data. The proposed VIIC-BCT was compared to the traditional VIP index (VIP-1) and the modified VIP index with boxplot cutoff threshold (VIP-BCT) thru simulation. The four parameters, percentage of the number of relevant variables (Prel), magnitude of mean difference of relevant variables between two classes (Mdif), degree of correlation between relevant variables (Σ) and the sample size (n), were specified to generate the specific 108 situations. The result indicated the VIIC-BCT shows the best performance in the particularly complicated circumstance.en
dc.language.isoen_USen
dc.subjectLeast squaresen
dc.subjectวิธีกำลังสองน้อยที่สุดen
dc.subjectPartial least squares regressionen
dc.subjectวิธีกาลังสองน้อยที่สุดบางส่วนen
dc.subjectVariables (Mathematics)en
dc.subjectตัวแปร (คณิตศาสตร์)en
dc.subjectMultiple variablesen
dc.subjectพหุตัวแปรen
dc.subjectData – Classificationen
dc.subjectข้อมูล – การจำแนกen
dc.titleVariable importance index based on the partial least squares and boxplot cutoff threshold for variable selectionen
dc.typeArticleen
Appears in Collections:Science and Technology - Artical Journals



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.