DSpace Repository

Variable importance index based on the partial least squares and boxplot cutoff threshold for variable selection

Show simple item record

dc.contributor.author Noppamas Akarachantachote
dc.contributor.author Seree Chadcham
dc.contributor.author Kidakan Saithanu
dc.contributor.author นพมาศ อัครจันทโชติ
dc.contributor.author เสรี ชัดแช้ม
dc.contributor.author กิดาการ สายธนู
dc.contributor.other Huachiew Chalermprakiet University. Faculty of Science and Technology en
dc.contributor.other Burapha University. College of Research Methodology and Cognitive Science en
dc.contributor.other Burapha University. Department of Mathematics en
dc.date.accessioned 2025-03-01T03:18:30Z
dc.date.available 2025-03-01T03:18:30Z
dc.date.issued 2017
dc.identifier.citation International Journal of Data Analysis Techniques and Strategies 9,1 (2017) : 34-45 en
dc.identifier.other https://doi.org/10.1504/IJDATS.2017.083063
dc.identifier.uri https://has.hcu.ac.th/jspui/handle/123456789/3698
dc.description สามารถเข้าถึงบทความฉบับเต็ม (Full Text) ได้ที่ : https://www.inderscienceonline.com/doi/abs/10.1504/IJDATS.2017.083063?journalCode=ijdats en
dc.description.abstract The variable importance in projection or VIP index obtained by the partial least squares regression (PLS-R) has become a crucial measurement of each predictor to relieve a problem of measuring multiple variables per sample. It has been applied to classification task although it is designed for regression. The new variable importance index combining concept of PLS-R and boxplot cutoff threshold, VIIC-BCT, was here particularly presented for classification of high dimensional data. The proposed VIIC-BCT was compared to the traditional VIP index (VIP-1) and the modified VIP index with boxplot cutoff threshold (VIP-BCT) thru simulation. The four parameters, percentage of the number of relevant variables (Prel), magnitude of mean difference of relevant variables between two classes (Mdif), degree of correlation between relevant variables (Σ) and the sample size (n), were specified to generate the specific 108 situations. The result indicated the VIIC-BCT shows the best performance in the particularly complicated circumstance. en
dc.language.iso en_US en
dc.subject Least squares en
dc.subject วิธีกำลังสองน้อยที่สุด en
dc.subject Partial least squares regression en
dc.subject วิธีกาลังสองน้อยที่สุดบางส่วน en
dc.subject Variables (Mathematics) en
dc.subject ตัวแปร (คณิตศาสตร์) en
dc.subject Multiple variables en
dc.subject พหุตัวแปร en
dc.subject Data – Classification en
dc.subject ข้อมูล – การจำแนก en
dc.title Variable importance index based on the partial least squares and boxplot cutoff threshold for variable selection en
dc.type Article en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account