DSpace Repository

• Development of a Tomato Fruit Anomalies Detector for a Small Greenhouse Drone Application

Show simple item record

dc.contributor.author Sittiporn Tantiborirak
dc.contributor.author Kanjanapan Sukvichai
dc.contributor.author Chanunya Loraksa
dc.contributor.author สิทธิพร ตันติบริรักษ์
dc.contributor.author กาญจนพันธ์ สุขวิชชัย
dc.contributor.author ชนัณญา โล่ห์รักษา
dc.contributor.other Kasetsart University. Faculty of Engineering en
dc.contributor.other Kasetsart University. Faculty of Engineering en
dc.contributor.other Huachiew Chalermprakiet University. Faculty of Science and Technology en
dc.date.accessioned 2024-08-31T13:22:02Z
dc.date.available 2024-08-31T13:22:02Z
dc.date.issued 2023
dc.identifier.uri https://has.hcu.ac.th/jspui/handle/123456789/2742
dc.description สามารถเข้าถึงบทความฉบับเต็ม (Full text) ได้ที่: https://ieeexplore.ieee.org/document/10044938 en
dc.description 2023 Third International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP) 18-20 January 2023 , Bangkok, Thailand en
dc.description DOI: 10.1109/ICA-SYMP56348.2023.10044938 en
dc.description.abstract Tomatoes are an important commercial crop. Tomatoes are popular in many parts of the world because they are easy to grow and have a high nutritional value. The fact that tomato fruits are prone to disease, even when grown in greenhouses, is a major challenge in large-scale tomato production. Agricultural drones are now being used to construct precision farming systems that can automatically detect irregularities in tomatoes. The main challenge with using a drone in a greenhouse is that the drone must be tiny enough to carry a restricted load, including an onboard computer. Because of this, the algorithm used to detect tomato fruit anomalies must be compact and efficient. The tomato fruit abnormalities detecting method was proposed in this research. The method involved with CNNs and image processing algorithms. First the location of each tomato in tomato vines were identify and localized by using YOLOv4-tiny CNNs model, then, each tomato fruit was cropped. The background of the tomato fruit was removed by graph-like structure called GrabCut. Finally, all major defects were detected separately by the segmentation-based color thresholding technique. The experiments were conducted. The result showed that YOLOv4-tiny could detect tomato fruits with 98.68% AP and the color thresholding successfully detected the tomato anomalies. en
dc.language.iso en_US en
dc.rights IEEE en
dc.subject Tomatoes en
dc.subject มะเขือเทศ en
dc.subject Image segmentation en
dc.subject การแยกข้อมูลภาพ en
dc.subject Greenhouses en
dc.subject เรือนกระจก en
dc.subject Precision Agriculture en
dc.subject เกษตรแม่นยำ en
dc.subject Anomaly detection en
dc.subject การตรวจจับสิ่งผิดปกติ en
dc.subject Drone aircraft in remote sensing en
dc.subject อากาศยานไร้นักบินในการวิเคราะห์ข้อมูลระยะไกล en
dc.title • Development of a Tomato Fruit Anomalies Detector for a Small Greenhouse Drone Application en
dc.type Proceeding Document en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account