DSpace Repository

Correlation analysis of laboratory blood tests and complications in Diabetes Mellitus using data mining technique

Show simple item record

dc.contributor.author Panthip Rattanasinganchan
dc.contributor.author Kritsanee Maneewong
dc.contributor.author Kittipat Sopitthummakhun
dc.contributor.author ปานทิพย์ รัตนศิลป์กัลชาญ
dc.contributor.author กฤษณี มณีวงศ์
dc.contributor.author กิตติพัฒน์ โสภิตธรรมคุณ
dc.contributor.other Huachiew Chalermprakiet University. Faculty of Medical Technology en
dc.contributor.other Chomthong Hospital. Division of Medical Laboratory and Clinical Pathology en
dc.contributor.other Huachiew Chalermprakiet University. Faculty of Science and Technology en
dc.date.accessioned 2024-09-24T14:27:30Z
dc.date.available 2024-09-24T14:27:30Z
dc.date.issued 2023
dc.identifier.uri https://has.hcu.ac.th/jspui/handle/123456789/2887
dc.description Proceedings of the 10th National and International Conference on "Research to Serve Society", 29 June 2023 at Huachiew Chalermprakiet University, Bangphli District, Samutprakarn, Thailand. (e-Conference on Zoom) p. 36-46. en
dc.description.abstract The laboratory blood tests in this study were collected from patients diagnosed with diabetes mellitus (DM) who were admitted to a public hospital in Chiang Mai Province. The aim of this study is to examine the correlation between laboratory blood tests and the incidence of complications associated with DM using a data mining technique. The J48 classifier was applied to construct a decision tree model and verify the precision of the simulation model. The laboratory blood tests were collected from 1,736 patients diagnosed with DM who were admitted to a public hospital in Chiang Mai Province, Thailand in 2020. The results showed that among the total DM cases, 54.55% were diagnosed with chronic kidney disease stage 2 (CKD 2) or higher, consistent with the microalbuminuria category where early and advanced kidney damage was observed in 66.82% of total DM cases. Interestingly, clinical factors such as BMI, eGFR and microalbuminuria are related to DM complications, particularly with respect to kidney dysfunctions. The decision tree model, simulated with the J48 classifier, achieves a high predictive accuracy with a correct classified instance rate of 87.44%. Verification parameters were used to validate the quality of the model in each class of chronic kidney dysfunction which classifier exhibited the high %True positive rates of more than 70% in all targeted CKD classes (CKD 1-5) and with Precision of more than 80% indicating low %False positive rate. These findings highlight the advantages of clinical data analysis using data mining techniques. en
dc.language.iso en_US en
dc.rights มหาวิทยาลัยหัวเฉียวเฉลิมพระเกียรติ en
dc.subject เลือด -- การตรวจ en
dc.subject Blood -- Examination en
dc.subject เลือด -- โรค -- การวินิจฉัย en
dc.subject Blood -- Diseases -- Diagnosis en
dc.subject การวินิจฉัยโรคทางห้องปฏิบัติการ en
dc.subject Diagnosis, Laboratory en
dc.subject เบาหวาน en
dc.subject Diabetes Mellitus en
dc.subject เหมืองข้อมูล en
dc.subject Data mining en
dc.subject น้ำตาลในเลือดสูง en
dc.subject กลูโคสในเลือดสูง en
dc.subject Hyperglycemia en
dc.title Correlation analysis of laboratory blood tests and complications in Diabetes Mellitus using data mining technique en
dc.type Proceeding Document en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account